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Abstract. A dengue virus causes diseases, including dengue hemorrhagic fever (DHF) 
which induces several sicknesses and deaths in Thailand. DHF is categorized as one of the 
most dangerous communicable diseases by the Ministry of Public Health Thailand 
(MoPH); moreover, the MoPH also sets strict protocols and encourages forecasting 
techniques for monitoring and dealing with the outbreaks. This research aims to utilize the 
data that were gathered from external sources, e.g. Google Trends data and meteorology 
data, to forecast the number of cases that will occur within the 7 day-interval in the next 
1–4 weeks. Six provinces—including Chiang Rai, Mukdahan, Pattani, Phichit, Ayutthaya, 
and Ratchaburi—were selected as they represent the unique patterns of dengue outbreaks 
in Thailand. The machine learning models—including Random Forest, AdaBoost, Extra-
Trees, and Regularized Regressions—were used to forecast the number of the cases. The 
performances of these models were compared to the performances of the traditional time 
series model including Naïve model and Moving Average. The proposed machine learning 
models for Chiang Rai, Mukdahan, and Pattani yield better results than those of the 
traditional models. 
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1. Introduction 
 

Dengue is a crucial mosquito-borne disease, causing 
illnesses and deaths, and mainly transmitted by Aedes 
aegypti mosquitoes. Dengue quickly spreads throughout 
several tropical countries, including Thailand. According 
to the report from 2014 to 2018 [1], dengue caused, on 
average, 90,471 DHF cases and 91 deaths per year in 
Thailand. Due to its severity, DHF is categorized as one 
of the most dangerous communicable diseases by MoPH. 
There were several imposed protocols in order to handle 
the outbreaks. However, these protocols depend on a 
surveillance system, i.e. they are reactive. Therefore, the 
Thai Government has encouraged the uses of forecasting 
techniques for anticipating the upcoming short- and 
long-term outbreaks.  

To forecast the situation of the outbreak that will 
occur in the future, there are multiple objectives depend 
on the time horizon that the models forecast. For 
example, for long-term forecasting, the models might 
assist in foreseeing the overall picture of a situation that 
will occur in the next few months or maybe years. 
Nevertheless, the short-term forecasting can provide 
other aspects to help related parties plan to intervene in 
the upcoming outbreak. There are many challenges in 
order to forecast the situation occurring in a short time 
horizon, e.g. 1–4 weeks ahead. Thereby, the promising 
traditional models for forecasting the short-term 
situation of the outbreak tend to rely on the concept of 
time-series forecasting that the recent data gain more 
weight.  

Beside of the forecasting models that are based on 
the previous occurring situation, there are many pieces of 
research using different variables and models to forecast 
dengue outbreaks. One study showed that weather 
conditions seem to affect the abundance of the vectors 
and also the risk of dengue [2]. Hence, some studies 
utilized the meteorology data—such as rainfall, relative 
humidity, and temperature—as features of the dengue 
forecasting models [3], [4]. Furthermore, the search query 
data on the search engines (e.g., Google, Yahoo, and 
Baidu) seem to have a high correlation with the severity 
of some disease outbreaks. Thereby, they were used as 
the input variables for disease forecasting models [5]. 

Nevertheless, in Thailand, there is no research that 
used meteorology data, the lagged terms of the number 
of illness cases, and the search query data to forecast the 
short-term situation. Thereby, the objective of this 
research is to integrate the weather data, the lagged terms 
of the number of DHF cases, and the search query 
volume into machine learning models for forecasting the 
number of DHF cases. The models are designed to 
forecast the incidences in 1–4 weeks horizon for the 
selected provinces. The provinces that their performance 
of short-term forecasting models—based on only lagged 
terms like Naïve and Moving Average—can be improved 
by integrating these external variables into the machine 
learning models are also investigated. 
 

2. Literature Review 
 
2.1. Basic Knowledge of Dengue 
 

Dengue is a tropical mosquito-borne infection 
especially widespread in tropical and subtropical areas. 
Dengue virus is mainly transmitted by female Aedes 
aegypti mosquitoes [6]. Dengue usually causes flu-like 
illness (known as dengue fever, DF) such as a high fever, 
headache, joint pain, or skin rash. In a particular case, the 
infection develops into life-threatening complications 
called dengue hemorrhagic fever (DHF), leading to 
bleeding and blood plasma leakage, or into a critical stage 
named dengue shock syndrome (DSS), causing 
dramatically low blood pressure and risk of death. 

DEN-1, DEN-2, DEN-3, and DEN-4 are four 
serotypes of the virus that cause dengue. Due to shared 
antigen determinants among these four serotypes, 
temporary cross-reaction and cross-protection can occur. 
Recovery from one particular serotype grants permanent 
immunity against that serotype but only provides partial 
immunity against the other three serotypes for about 6–
12 months. The risk of developing DHF increases with 
consecutive infections by the other serotypes [7]. 

As the primary vector of dengue, female Aedes aegypti 
mosquitoes are able to transmit the virus for the rest of 
its life once infected. Humans, bitten by infected 
mosquitoes, become a virus source for uninfected 
mosquitoes. The virus, in humans, can be transmitted for 
4–12 days once the first symptom showed [7]. 

Some meteorology variables (e.g. temperature, 
precipitation, and humidity) can lead to an abundance of 
the mosquitoes, as well as the risk of dengue infection [2]. 
Because of proper conditions, the number of patients 
infected by dengue in the rainy season is high compared 
to the other seasons. 

 
2.2. Dengue-related Data 
 

Previous studies on disease forecasting used various 
types of information to obtain disease insights based on 
its nature or characteristic. Different kinds of data 
described below are going to be implemented in 
proposed forecasting models as they are naturally related 
to dengue incidences in many aspects. 
 
2.2.1. Search Query Volume 
 

Google Trends is a tool for investigating the trend of 
a keyword that was searched in a particular time-frame 
and location. It provides a result in the form of Google 
Trends score. The score is scaled from 0 to 100 
according to the popularity of keywords across different 
locations within a fixed time range, or across different 
periods of time within a particular area. It was shown 
that Google Trends data could capture the peak of the 
flu incidences in Taiwan [8]. Google query volume data 
can be used to accurately predict influenza epidemics at 
the regional level in the U.S. [9]. Furthermore, the 
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Google Trends data could also be used as a feature for a 
tuberculosis prediction model at the state and national 
levels in the U.S. [10]. 

In order to find the proper search terms to be used 
as forecasting model features, the Google Correlate 
platform seems to be a useful site. Since it can list up to 
100 words that have a similar search volume trend to the 
interested keyword. It was used to find 164 search terms 
that may have some correlation with 64 infectious 
diseases to create the prediction models [11]. 
 
2.2.2. Meteorology Data 
 

The number of dengue infection cases seems to 
increase rapidly in the rainy season. Because the vector 
can reproduce in rainwater that accidentally trapped in 
containment site or forested swamp. Moreover, other 
characteristics of the weather also have effects on both 
human and mosquito behavior [7]. Hence, it is necessary 
to use the meteorology data as features to dengue 
prediction models [3], [4], [12]. 
 
2.2.3. Incidence Data 
 

Since the sets of disease incidence data are in a time-
series form and some disease outbreak data seem to have 
seasonal and/or trend patterns [7]. The incidence data 
from the past, therefore, are very crucial information to 
create a prediction or forecasting model [10], [13]. 
 
2.3. Machine Learning Models for Disease 

Forecasting 
 

Machine learning models are effective methods for 
various kinds of analysis tasks. Thanks to its diversity and 
benefits, many machine learning techniques were used to 
forecast disease outbreaks by several researchers. Some 
machine learning algorithms were selected to be applied 
to this research as explained in the following subsections. 
  
2.3.1. Tree-based Models 
 

Decision tree model can be used to build a 
prediction model using sequential decision steps in order 
to minimize the loss function to find the best possible 
model called strong learners. The decision steps begin 
with the root, then decide which branch should be 
selected, based on criteria on each step, and keep 
deciding until reaching the last leaf. However, there are 
other approaches, called ensemble learning, that use 
many weak learners based on a majority vote or average 
outcome in order to predict the result.  

Random forest is one of the most popular ensemble 
tree-based models that seems to have great performance. 
It uses many decision trees that have different sets of 
features and steps to average the results in order to 
predict the target [14]. However, some hyperparameters, 
such as the number of estimators that indicates how 
many trees should be used to create a model, the 

maximum number of features used in a tree, and the 
minimum number of leaves required to split an internal 
node, have to be tuned. 

In Guangdong, China, [12] used a gradient boosted 
regression tree algorithm to forecast weekly dengue cases. 
In Manila, the Philippines, [15] developed a random 
forest model to predict weekly dengue incidences. In 
Singapore, [16] mapped a spatial dengue risk using a 
random forest model. Globally, [17] also implemented 
and random forest models to map a Zika transmission 
risk. 

Beside of the models mentioned above, there are 
some ensemble concepts of the tree-based model that 
usually promise the accurate predicting results, Adaptive 
Boosting (AdaBoost) and extremely randomized trees 
(Extra-Trees) regressor [18].  
 
2.3.2. Regularized Regression Models 

 
Different from Linear Regression Models, 

Regularized Regression Models combine the approach of 
important feature identification to the models, i.e. 
penalization, which can alleviate an overfitting problem 
and extract significant variables from the models. These 
models are simple yet robust and applicable to several 
forecasting tasks. 

Ridge Regression and Least Absolute Shrinkage and 
Selection Operator (LASSO) are kinds of regularized 
regression models which were implemented to forecast 
dengue incidences. For example, [19] developed LASSO 
to forecast weekly dengue incidences in Singapore and 
also the result can be beneficial to the country’s dengue 
control program.   
 

3. Methodology 
 

This section describes processes for developing 
DHF forecasting models as illustrated in Fig. 1. The 
processes can be summarized as a framework with four 
components: Data Preparation and Preprocessing, 
Traditional Forecasting Models Creation, Machine 
Learning Models Development, and Model Selection and 
Feature Importance Finding. The detailed methodology 
for each component will be explained in the following 
subsections. 
 
3.1. Data Preparation and Preprocessing 
 
3.1.1. Data Gathering 
 

The datasets used in this project, for feature and 
target values creation, were acquired from several sources. 
 
3.1.1.1. The Data of the Number of DHF Cases 

Occurred within Each Province in Thailand 
 

The weekly data of the number of DHF cases 
occurred within each province in Thailand were provided 
by the “Report 506 (RP506)” of the department of 



DOI:10.4186/ej.2020.24.3.71 

74 ENGINEERING JOURNAL Volume 24 Issue 3, ISSN 0125-8281 (https://engj.org/) 

disease control Thailand. The data range is from January 
2007 to November 2018. Unfortunately, the data from 
July 2017 to December 2017 were missing. 

Although there are 77 provinces in Thailand, only 
some provinces were used to represent all major unique 
patterns of the outbreaks in Thailand. K-means 
clustering model was chosen as a method to group the 
provinces. Before being clustered, the standardize of the 
number of DHF cases was calculated by normalizing the 
raw data along the time (2007–2018) within each 
province. Then, these values of each province were 
subtracted by the average value of the whole country in 
same period to demonstrate the pattern that each 
province had the outbreak situation under or beyond the 
situation of the whole country. Consequently, the 6 
groups of provinces were clustered, as shown in Fig. 2, 
because the inertia score after clustering seemed to 
change with a lower rate after clustering more than 6 
groups. Hence, 6 groups clustering was the optimal 
choice. Since the provinces in each group have similar 

historical standardized the number of DHF cases to 
others in the group, it could be assumed that the number 
of cases occurring in the future of those provinces can be 
forecasted with the resemble models of the 
representative province of each group. Chiang Rai, 
Ayutthaya, Ratchaburi, Phichit, Pattani, and Mukdahan 
were decided to be the representative of each group due 
to their high correlation of historical standardized of the 
number of DHF cases with the average values of their 
groups.  

As shown in Fig. 3, the six groups of provinces were 
demonstrated as six different colors. Furthermore, the 
provinces clustered to the same group tend to locate 
nearby the others in the same group. This might be 
because the immunities of the people live within each 
area are the same. Since the immunity of dengue virus 
depends on the previous infection, the people live within 
the same neighborhood might experience the prior 
infection during the earlier peak of the outbreak within 
that area in the same time. 

 
 

 
 
Fig. 1. DHF forecasting models development framework. 
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Fig. 2. Heatmap of standardized the number of DHF cases occurring within each province in Thailand grouped by 
K-means (K=6). 
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Fig. 3. Thailand map demonstrating the clustered provinces within each group. 
 
 

 
 
Fig. 4. The number of DHF occurred in Chiang Rai province and the Google Trends score of the keyword 

“ไข้เลือดออก”, which means “dengue” in Thai. 

  



DOI:10.4186/ej.2020.24.3.71 

ENGINEERING JOURNAL Volume 24 Issue 3, ISSN 0125-8281 (https://engj.org/) 77 

Table 1. Top 10 keywords that are most correlated with keyword “ไข้เลือดออก” on Google Correlate. 

 

Keywords Correlation Meaning in English 

ยุง ลาย 0.9109 Aedes aegypti mosquito 
โรค ไข้เลือดออก 0.9046 dengue fever 

กำจัด ยุง ลาย 0.8197 kill Aedes aegypti mosquito 

การ กำจัด ยุง ลาย 0.8078 Aedes aegypti mosquito killing 

dengue 0.8070 Dengue 

dengue fever 0.7973 Dengue fever 

ข่าว ไข้เลือดออก 0.7875 dengue fever NEWS 

ยุง 0.7838 Mosquito 

ป้องกัน ไข้เลือดออก 0.7737 dengue fever prevention 

ป้องกัน ยุง 0.7707 mosquito prevention 

 
 
3.1.1.2. Google Trends Data 
 

Weekly Google Trends scores of dengue-related 
keywords were obtained in a whole country scale. 
Unfortunately, the province-level data were not used in 
this research. In some provinces, the search volume of 
some selected keywords was too small within weekly 
interval; therefore, Google does not show the actual 
score of search volume and demonstrate it as zero to 
secure the privacy of its users.  

Like other researches [9], [13], the search volume of 

disease name in the native language, “ไข้เลือดออก” that 

means “dengue” in Thai, have a high correlation with the 
number of cases occurred in the particular areas. For 
example, as depicted in Fig. 4, the search score of 
“ไข้เลือดออก” has high correlation with the number of DHF 

cases occurred in Chiang Rai. Therefore, the Google 
Trends score of this keyword is accounted one of 
features in forecasting models. Moreover, other 10 
keywords (see Table 1) that have a high correlation with 
the keyword “ไข้เลือดออก” in search volume on Google, 

based on Google Correlate platform [20], were also 
considered and treated as the model features. The model 
features considered only 10 additional words because 
some words that were ranked beyond the tenth seemed 
to be unrelated to the outbreak. To illustrate, the 11th 
ranked word, “ผู้ ก่อตั้ง ลูกเสือ” which means “the founder of 

boy scout organization”, seems to not relate the dengue 
in any aspect. 
 
3.1.1.3. Daily Thailand Meteorology Data  
 

The daily meteorology data—including rainfall, 
relative humidity, sunshine length, daily maximum 
temperature, daily minimum temperature, daily average 
temperature, wind direction, and wind speed—were 
provided by the information service of Thai Metrological 
Department. The data range is from 2014 to 2018. Each 
field of data was aggregated to the weekly interval by 
averaging the values within each week. 

However, the data of sun duration of Pattani 
province, the selected province, were not be measured 
and recorded by the Thai Metrological Department; 
hence, only the rest meteorology data fields were used to 
build the forecasting model for Pattani. 
 
3.1.2. Data Merging 
 

All datasets involving selected provinces were 
merged into one weekly interval dataset, range from 
January 2014 to November 2018. 
 
3.1.3. Data Preprocessing 
 

The missing rainfall values of meteorology data were 
set to zero. Other missing values, e.g. sunshine duration 
of Mukdahan, were replaced by the average of sunshine 
duration in the same week of the year. 

From preliminary analysis, the outliers of Google 
Trends scores were observed. Any extreme score (excess 
2.7SD. of each keyword) was set to its 2.7SD. The zero 
values of Google Trends scores were set to the average 
value between the minimum value that is not zero and 
zero. 

With machine learning techniques, data partitioning 
process is required. The dataset was split into two 
datasets. First, the dataset, range from January 2014 to 
June 2017, was prepared for training the models. Second, 
the dataset from January 2018 to November 2018 was 
prepared for the final evaluation of each model. 
 
3.2. Traditional Time-series Forecasting Model 
 

In this research, the Naïve model and Moving 
Average (time window is 2 weeks) were used as baseline 
models because the forecast results of these models are 
mainly weighted by the very recent data. These baseline 
models are the models that tailor-made models tried to 
overcome. However, Exponential Smoothing with Linear 
Trend was not included in this research as from a 
preliminary experiment, the best parameters (alpha and 
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beta) of Exponential Smoothing with Linear Trend 
seemed to be close to one and zero, respectively 
(strongly weighting based on the most recent data point 
resembling Naïve method). For example, the best alpha 
and beta of the 1-week ahead model for Ratchaburi are 
0.94 and 0.0051, respectively, and the 4 weeks ahead 
model are 0.98 and 0, respectively. Moreover, the same 
situation occurred in other provinces. Therefore, only the 
Naïve method and Moving Average would be discussed 
in this research. 

As these models are typically used for a very short 
forecasting step, i.e. one period ahead, the models were 
proposed under a practicality assumption. To illustrate, if 
a forecast occurs in week T, the forecasted incidence 
values in the next 4 weeks (week T+1, T+2, T+3, and 
T+4) by the Naïve model will be the same, which is the 
number of DHF incidences in week T. Likewise, the 
forecasted incidences from Moving Average will also be 
the same, which is the average value between the number 
of incidences in week T-1 and T. 
 
3.3. Machine Learning Models 
 

This subsection explains a machine learning 
procedure that this work follows. The procedure covers 
why new target values for the models are intentionally 
crafted, how model features are engineered, and how to 
fit, fine-tune, and evaluate the models. 
 
3.3.1. Target Value Creation 
 

In order to forecast the number of DHF cases that 
will occur in the next 1–4 weeks accurately, the model 
had to learn the pattern from historical data. However, 
the historical data seems to be noisy and have fluctuating 
trends (see Fig. 5) that potentially cause overfitting and 
lagging issues. Therefore, new target values that remedy 
noises and trends by averaging and differentiating 
between two smoothed terms were created (discussed 
later in 3.3.1.1 and 3.3.1.2, respectively). By these target 
creation methods, it was believed that the models can 
capture major trends, without excess noises, and forecast 
DHF incidences more accurately. 
 
3.3.1.1. First Target 
 

As mentioned above, the average value of 3 periods 
was considered as a target value for training. Since the 
model could train with any data points in a training 
dataset, the target value was calculated by averaging the 
number of the cases from the previous week, current 
week, and the next week. To illustrate, the models will 
learn features in week T to forecast the average value of 
the number of DHF cases occurred in week T-1, T, and 
T+1. As shown in Fig. 5, the target values (orange 
triangle point) are made by averaging three red diamond 
points, i.e. actual data. 

The reasons why future data points are included in 
modifying the targets are the trend and seasonality. It is 

noticeable that the incidence data show possible trends 
and a seasonal manner as they are nature-related. 
Averaging only current and past records may result in a 
lagged manner and not represent the actual disease 
epidemic. On the other hand, including some future data 
in the target creation process can solve this issue. By 
learning these target values, the machine learning models 
could forecast more accurately compared to those that 
tried to forecast the actual data that were full of noises 
and fluctuating trends. 
 
3.3.1.2. Second Target 
 

Besides the created first target values mentioned in 
3.3.1.1, another form of target value was crafted, called 
the second target. Although the models, built based on 
learning the first target values, could resolve some 
overfitting problems, most models seemed to face the 
major problem that they could not forecast the target 
values being out of the range of the training dataset. For 
example, their forecasting values were not able to reach 
the peaks of some outbreaks. Hence, another target value 
form that is more stationary was developed. 

By forecasting the difference of the first targets 
accurately, the number of cases that tends to occur in the 
future could be forecasted more precisely. The 
differences of the first target points between weeks vary 
within limited range compared to the actual number of 
cases or the first target values. It is supposed that the 
machine learning models might perform better in 
forecasting these values. As demonstrated in Fig. 6, the 
second target value (red triangle point) was created by 
calculating the difference between two blue diamond 
points. By adding the forecasted second target to the 
previous first target, the results of these models might be 
better. To summarize, the patterns of actual incidences, 
the first targets, and the second targets for selected 
provinces can be found in Fig. 7. 
 
3.3.2. Feature Creation 
 

Due to the life cycle of mosquitoes, the lagged terms 
of meteorology data seem to affect the propagation of 
the mosquitoes and also dengue virus [21]. Moreover, 
many previous pieces of research showed that some lag 
terms of temperature have a high correlation with the 
recent situation of dengue. For example, [22] found that 
2 months lag term of rainfall and minimum temperature 
has a high correlation with the abundance of the vector 
in the north region of Thailand. [23] found that the 
minimum temperature since the last two weeks is also a 
strong input variable for dengue prediction. Therefore, 
the lagged terms (up to 60 lags), 2–8 weeks averages, 2–8 
weeks minimums, 2–8 weeks maximums, and differences 
between recent week data and the last 2–8 weeks for all 
fields of meteorology data were created. This feature 
engineering method was also applied to other data, e.g. 
Google Trends score and smoothed the number of the 
DHF cases. All created features were listed in Table 2. 
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Fig. 5. The examples of the actual number of DHF cases (rectangle mark on the blue line) and created first target 
values for model training (circle mark on the orange line) from training dataset of Ayutthaya province. 
 

 
 
Fig. 6. Second targets (rectangle mark on the green line) created by differentiation of first target (circle mark on the 
orange line) from training dataset of Ayutthaya province. 
 



DOI:10.4186/ej.2020.24.3.71 

80 ENGINEERING JOURNAL Volume 24 Issue 3, ISSN 0125-8281 (https://engj.org/) 

(a)  

(b)  

(c)  
 
Fig. 7. the number of DHF cases, first target, and second target of Chiang Rai (a), Mukdahan (b), and Pattani (c). 
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(d)  

(e)  

(f)  
 
Fig. 7. (continue) the number of DHF cases, first target, and second target of Phichit (d), Ayutthaya (e), and 
Ratchaburi (f). 
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Table 2. Feature creation summary. 
 

Original Features Lags Difference Max Min and Average values 

Google Trends scores of 
interested keywords (the 
most recent data while 
forecasting is 1 lag) 

2-60 
lagged 
terms 

The Difference between the value of 
the previous week and those of the 
other 8 previous weeks (difference 
between week T-1 and T-2, T-3, …, 
T-9) 

Average, minimum, and maximum 
values of the time-window since the 
previous week to the other previous T 
weeks (for T in [1, 2, 3, 4, 5, 6, 7]) 

Meteorology Data 
(the most recent data 
while forecasting is 0 lag) 

1-60 
lagged 
terms 

The Difference between the value of 
the current week and those of the 
other 8 previous weeks (difference 
between week T and T-1, T-2, …, T-
8) 

Average, minimum, and maximum 
values of the time-window since the 
recent week to the other previous T 
weeks (for T in [1, 2, 3, 4, 5, 6, 7]) 

The smoothed number of 
DHF cases (the most 
recent data while 
forecasting is 0 lag) 

1-60 
lagged 
terms 

The Difference between the value of 
the current week and those of the 
other 8 previous weeks (difference 
between week T and T-1, T-2, …, T-
8) 

Average, minimum, and maximum 
values of the time-window since the 
recent week to the other previous T 
weeks (for T in [1, 2, 3, 4, 5, 6, 7]) 

 
3.3.3. Fitting Machine Learning Models 
 
3.3.3.1. Fitting Machine Learning Models for Case 

Forecasting 
 

The first target values, discussed in subsection 3.3.1.1, 
along with created features, discussed in subsection 3.3.2, 
were fitted into Ridge Regression, LASSO, Random 
Forest regressor, Extra-Trees regressor, and AdaBoost. 
By using these models, the weekly number of cases that 
will occur in the next 1–4 weeks can be forecasted. 
 
3.3.3.2. Fitting Machine Learning Models for Difference 

Term Forecasting 
 

The difference of the first target (second target), 
discussed in subsection 3.3.1.2, along with created 
features, discussed in section 3.3.2, were fitted into Ridge 
regularized regression, LASSO, Random Forest regressor, 
Extra-Trees regressor, and AdaBoost. By using these 
models, the differentiation between the situation of this 
week and the next week could be forecasted. In order to 
forecast the case for the next T week, the forecasting 
result could be obtained by adding the term of forecasted 
T-period-difference to the most recent first target. 
 
3.3.4. Model Evaluation 
 

The metric used for tuning and model selecting is 
mean squared error (MSE) because the model that yield 
extremely high errors should be penalized severely. This 
is because, in practical uses, if the errors between 
forecasting values and actual values are too high, it might 
cost a lot of things. For example, it might make the 
government underestimate the situation, that might cause 
low prevention, or overestimate the situation, that might 
cause the unnecessary usage of the precious resources. 
Each machine learning was tuned by selecting the best 
combination of the importance hyperparameters that 
yield the minimum average MSE score of validation sets 

using time-series split, i.e. expanding window (five-fold, 
randomly searching throughout the grid of the selected 
ranges of hyperparameters). The random searching 
throughout the pre-determined grid was used because of 
time limitation while receiving promising results. 
However, if the best-found combination of 
hyperparameters seemed to be near the bound of the 
pre-selected range, the bound was expanded in order to 
validate that the best-found model is close to the local 
optimum of the searched area.  

Other metrics, including mean absolute error (MAE) 
and R-squared (R2), were also used to understand other 
views of the model performance. Nevertheless, mean 
absolute percentage error (MAPE) was not used in this 
research. This is because some points of the data, the 
number of DHF case of each week, are very small. For 
example, some of each week of some province had zero 
DHF occurred; therefore, the MAPE score might be 
very high close to infinity. Thus, it cannot be useful to 
demonstrate anything about the model performance.  
 

4. Results & Discussion  
 
4.1. First Target Models and Traditional Models 
 

The results of the traditional model against the first 
target model are demonstrated in Table 3. Some 
traditional models of some provinces seem to yield 
promising result since the number of occurring DHF 
cases usually has a high correlation to the situation of the 
recent weeks. As a result, the models that forecast the 
first target seem to lose to the traditional models while 
forecasting the near future (1 week ahead). However, 
some of the first target models, for Mukdahan, seem to 
have promising result in predicting the further future (2–
4 weeks ahead). Nevertheless, in some provinces, there 
are the situations that there are some peaks, which is 
extremely high compared to the data of the test set, in 
training dataset. For example, Pattani and Ratchaburi (see 
Fig. 7 (c) and (f)), that have high peaks of the number of 
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DHF cases data that cause the first target model to 
perform inefficiently. Moreover, the unpleasant results of 
some first target model might occur because the relations 
between created features and the first target, the 

smoothed cases, is too slightly for machine learning 
model to capture and use these insights to make the 
forecasting accurately. Therefore, the first target models 
performed worse than the traditional models. 

 
 
 
Table 3. The performance of the best models for each province and each forecast step among the first target models 
and traditional time-series models.1, 2 
 

Ahead Metrics 
Province 

Chiang Rai Mukdahan Pattani Phichit Ayutthaya Ratchaburi 

1 MSE 281.73 (N) 6.39 (MA) 19.02 (MA) 111.68 (N) 92.11 (MA) 67.50 (N) 

MAE 12.86 (N) 1.84 (MA) 2.80 (MA) 7.88 (N) 6.70 (MA) 6.74 (N) 

R-Squared 0.91 (N) 0.78 (MA) 0.76 (MA) 0.81 (N) 0.75 (MA) 0.67 (N) 

2 MSE 609.88 (N) 9.76 (L) 17.07 (MA) 200.34 (N) 113.12 (MA) 98.88 (N) 

MAE 18.10 (N) 2.20 (L) 3.12 (MA) 10.75 (N) 7.71 (MA) 8.00 (N) 

R-Squared 0.81 (N) 0.66 (L) 0.77 (MA) 0.65 (N) 0.69 (MA) 0.53 (N) 

3 MSE 1026.66 (N) 11.89 (L) 25.11 (MA) 343.05 (N) 158.08 (MA) 123.87 (N) 

MAE 23.95 (N) 2.43 (L) 3.84 (MA) 13.78 (N) 8.76 (MA) 8.87 (N) 

R-Squared 0.97 (N) 0.58 (L) 0.66 (MA) 0.40 (N) 0.56 (MA) 0.40 (N) 

4 MSE 1729.00 (N) 13.60 (L) 32.86 (MA) 539.46 (N) 233.71 (N) 147.14 (N) 

MAE 33.38 (N) 2.67 (L) 4.17 (MA) 17.47 (N) 12.32 (N) 9.26 (N) 

R-Squared 0.45 (N) 0.52 (L) 0.56 (MA) 0.07 (N) 0.36 (N) 0.30 (N) 

 
 
 
Table 4. The MSE improvement percentage of the best first target models compared to the best traditional models 
for each province and forecast step. 
 

Ahead 
Province 

Chiang Rai Mukdahan Pattani Phichit Ayutthaya Ratchaburi 

1 -19.42% -6.89% -19.54% -55.94% -44.25% -17.00% 

2 -54.70% 0.50% -143.92% -65.87% -12.07% -50.31% 

3 -72.18% 22.12% -226.17% -24.34% -38.47% -30.67% 

4 -25.19% 34.77% -171.29% -2.29% -9.85% -3.19% 

 

 
1 Grey cells represent that the first target models perform better compared to the traditional ones and light grey cells represent 
that the traditional models perform better compared to the first target ones. 
2 (N), (MA), and (L) refer to Naïve, Moving Average, and LASSO models respectively. 
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Additionally, the improvement percentage of MSE 
when forecasting with the first target models is listed in 
Table 4. Similar to the result in Table 3, most of the first 
models showed negative improvement, which means the 
traditional models outperform, and showed positive 
improvement only in 2–4 weeks ahead forecasts for 
Mukdahan. However, among the positive improvement, 
it can be found that only 3 and 4 weeks ahead forecasts 
for Mukdahan presented noticeable reduces in MSE, i.e. 
more than 10% in improvement. 
 
4.2. Second Target Models and Traditional Models 
 

The results of traditional models against the second 
target models are demonstrated in Table 5. The results 
showed that the models predicting the second target 
yielded more promising results. They could forecast the 
outbreak situations accurately. For example, in 
Mukdahan cases, the second target models performed 
better than traditional and first target models. 
Furthermore, Pattani models showed significant 
improvement in forecasting 3 and 4 weeks ahead with 
the second target models. Moreover, Chiang Rai models 

showed significant improvement for every time horizon 
with the second target models. It is supposed that the 
relationship between the features and the second targets 
can be more detected. Therefore, the improvements in 
accuracy for some provinces could be discovered. 
Unfortunately, in Phichit, Ayutthaya, and Ratchaburi 
cases, that the first target models underperformed the 
traditional models for every time horizons (ahead 1–4 
weeks), the second target models also could not alleviate 
this issue. 

Furthermore, Table 6 presents the improvement in 
MSE when forecasting with the second target models. 
The overall improvement was clearly better than those in 
Table 4 and as the percentages increased. For Mukdahan, 
one-week ahead forecasting could now provide 
noticeable reduction in MSE. Fortunately, 1–4 weeks 
ahead for Chiang Rai as well as 3 and 4 weeks ahead 
forecasting for Pattani illustrated the major recovery as 
their performance was substantially augmented. Four 
weeks ahead forecasting for Phichit and Ratchaburi also 
gave important decreases in MSE. Nevertheless, the 
second target models could not perform considerably 
better than the traditional models for Ayutthaya. 

 
 
 
Table 5. The performance of the best models for each province and each forecast step among the second target 
models and traditional time-series models.3, 4 

 

Ahead Metrics 
Province 

Chiang Rai Mukdahan Pattani Phichit Ayutthaya Ratchaburi 

1 MSE 237.98 (RF) 5.52 (AB) 17.13 (ET) 111.68 (N) 92.11 (MA) 67.50 (N) 

MAE 10.98 (RF) 1.61 (AB) 2.83 (ET) 7.88 (N) 6.70 (MA) 6.74 (N) 

R-Squared 0.92 (RF) 0.81 (AB) 0.78 (ET) 0.81 (N) 0.75 (MA) 0.67 (N) 

2 MSE 543.87 (R) 6.91 (ET) 17.07 (MA) 200.34 (N) 113.12 (MA) 98.88 (N) 

MAE 16.44 (R) 1.80 (ET) 3.12 (MA) 10.75 (N) 7.71 (MA) 8.00 (N) 

R-Squared 0.82 (R) 0.76 (ET) 0.77 (MA) 0.65 (N) 0.69 (MA) 0.53 (N) 

3 MSE 847.23 (R) 9.18 (L) 18.20 (AB) 343.05 (N) 155.30 (RF) 123.87 (N) 

MAE 21.27 (R) 2.05 (L) 3.20 (AB) 13.78 (N) 9.34 (RF) 8.87 (N) 

R-Squared 0.72 (R) 0.68 (L) 0.78 (AB) 0.40 (N) 0.56 (RF) 0.40 (N) 

4 MSE 1193.56 (R) 10.12 (RF) 22.16 (L) 464.72 (RF) 233.71 (N) 116.05 (AB) 

MAE 25.65 (R) 2.02 (RF) 3.37 (L) 14.91 (RF) 12.32 (N) 8.56 (AB) 

R-Squared 0.61 (R) 0.65 (RF) 0.73 (L) 0.18 (RF) 0.36 (N) 0.47 (AB) 

 
  

 
3 Dark grey cells represent that the second target models perform better compared to the traditional ones and light 
grey cells represent that the traditional models perform better compared to the second target ones. 
4 (N), (MA), (RF), (L), (AB), (R) and (ET) refer to Naïve, Moving Average, Random Forest, LASSO, AdaBoost, Ridge 
Regression, and Extra-Trees models respectively 
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Table 6. The MSE improvement percentage of the best second target models compared to the best traditional 
models for each province and forecast step. 
 

Ahead 
Province 

Chiang Rai Mukdahan Pattani Phichit Ayutthaya Ratchaburi 

1 15.53% 14.56% 9.95% -24.36% -7.22% -16.46% 

2 10.82% 29.51% -14.54% -16.86% -2.84% -12.28% 

3 17.48% 39.84% 27.49% -1.31% 1.76% -5.50% 

4 30.97% 51.50% 32.55% 13.85% -0.62% 21.13% 

 
4.3. Further Discussion 
 

In addition, some provinces, e.g. Phichit, Ayutthaya, 
and Ratchaburi, that the machine learning models could 
not perform better than traditional models in both 
initiatives were explored more. It was found that the data 
in 2018 (test data) for Phichit (see Fig. 7 (d)) are 
dramatically different from the data for model training 
and the pattern of incidences shows no sign of 
reappearance for both first and second target. 
Consequently, the models struggle to forecast unseen 
patterns and only the second target model for 4-week 
ahead forecasting achieves better performance than the 
traditional.  

For Ayutthaya (see Fig. 7 (e)), the dengue situation 
seems to differ along the time. The actual number of 
DHF cases that occurs within each week appears not to 
repeat itself. Thereby, the first and second targets are 
fluctuating and hard to predict. As a result, the traditional 
models perform better than the others. Only few second 
target models that can perform slightly better than 
traditional model for the 3 weeks ahead forecasting. This 
might be because the effect of used features gives some 
valuable insights when forecasting; therefore, the 
performance of models is better than the traditional 
models that only rely on the previous data of itself. 

Other reasons to explain the unpleasant results 
might be a surveillance system problem, short forecasting 
intervals, and unknown relationship between the data. As 
the number of dengue incidences in this research mainly 
bases on the surveillance system, with an inconsistent 
report, the data could be fuzzier than an expectation. 
Especially in the provinces with a small population like 
Phichit, variation from the system could significantly 
affect the pattern of an outbreak record and made the 
trend less predictable. Moreover, the nature of patients 
within each province—whether they usually go to the 
hospital right after they got sick or they usually to rest at 
home until the symptoms go bad—might affect the 
nature of the surveillance record and outbreak nature 
pretty much. Furthermore, there might not be a strong 
correlation between created features and the outbreak 
pattern. Thereby, these issues should be explored more 
in the research. And other feature should be tried to use 
as input variables for these provinces. 

The short period ahead forecasting usually 
experiences noisy data as the variation is separated into 
periods. The task becomes difficult as the forecasting 
model must detect and capture trend that lies under the 
fluctuation and if the nature of the data is itself 
considerably fluctuated, it becomes even more 
problematic. With this characteristic, some sets of data 
can be explained well using only the simplest and easiest 
forecasting model, Naïve forecasting, since it is nearly 
impossible to extract the relation between data from the 
pool of variation. Therefore, the most recent record 
appears to be the best forecast. 

Although the pattern of some provinces, e.g. 
Ratchaburi (see Fig. 7 (f)), seems to be forecasted 
acceptably with the second target model as Pattani do, 
the traditional models dominated the proposed models. 
The possible reason might from insufficient data 
relationship. Despite the current feature engineering 
process, the machine learning models could need more 
data sources to learn and find the relationship. With 
more sources, the models are believed to improve their 
performance. Moreover, due to Google Trends and 
meteorology data limitation, the overall data range used 
in this research (about 4 years and a half) is relatively low 
compared to other researches. Increasing in a data pool 
can enhance the power of the models, both traditional 
and machine learning. 
 

5. Conclusion 
 

This research aims to integrate the analysis of 
meteorology and Google Trends data to forecast the 
number of DHF incidences of provinces, representing 
major outbreak trends in Thailand. In order to forecast 
the very near situation of DHF outbreak of noisy data in 
some provinces, the models that depend only on recent 
data, i.e. Naïve and Moving Average models, seem to be 
good at it. However, for these provinces, if the further 
time-horizon situations are required to be forecasted, 
machine learning models that learn the relation between 
the pattern of related features and the number of the 
DHF cases yield the better performance. 

In some provinces, whose outbreak pattern usually 
repeats itself and varies within the same-limited range 
along the time-horizon, the machine learning models 
seem to be good for these cases. Furthermore, by 
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forecasting the difference of the situation—the 
difference of smoothed values of the number of the 
cases like the performed task in the second target 
models—seem to be better than forecasting the number 
of occurring cases, like the task performed in the first 
target models. 

For further works, it is recommended to provide 
both traditional and complex forecasting models with 
practical and sufficient data sources. Specifically, the 
process of feature creation for machine learning can be 
researched further to craft more beneficial and dengue-
related features which also improve forecasting accuracy. 
Moreover, there are the areas that should be explored 
more in order to increase the accuracy of forecasting. For 
example, the micro-components of time-series data such 
as, trends and seasonal effect, should be extracted to be 
target values in order to gain the models that yield better 
performance. 
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