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Abstract. Data reconciliation is a mathematical approach that improves the quality of 
measurements by calculating the reconciled data that satisfy the process constraints. The 
conventional data reconciliation approach relies on the process model that contains the 
constant parameters. In the industrial applications, however, there are always possible 
variations of parameters within the system. In this paper, a new data reconciliation approach 
based on the partial differential equation (PDE) is developed. The proposed data 
reconciliation approach is experimentally applied to a case study of temperature 
measurements for a refinery process. The PDE-based model is employed in the formulation 
of the optimization problem. Unlike the conventional data reconciliation approach in which 
the system is assumed to be lumped, the PDE-based data reconciliation approach includes 
in the problem formulation the variations of parameters within the system in order to 
describe the real system’s behaviour. The reconciled values can be computed within the 
computational domain so they can be used as the data for troubleshooting, equipment 
analysis and maintenance. 
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1. Introduction 
 
Chemical processes are usually involved with the technologies that change some reactants into more useful 
products. In the real operations of chemical processes, the process variables must be measured for monitoring 
and control at the profitable conditions. The measurement values, however, inevitably contain errors at some 
certain levels. Thus, a data pre-processing technique is important in the industrial operations. Data 
reconciliation is one of the techniques extensively used in order to improve the quality of measurements [1-
3]. 

In the conventional data reconciliation approach, the reconciled data can be obtained by solving the 
optimization problem which minimizes the measurement errors subject to some process constraints [4, 5]. 
The models based on mass and energy balances are usually employed in order to describe the system 
behaviour. Plácido et al. [6] applied the data reconciliation approach to a petroleum refinery process in order 
to detect the unexpected flow deviation and product loss. The quality of the measured data was improved 
due to the fact that the effects of random and gross errors were reduced. Sarabia et al. [7] applied the data 
reconciliation approach to the optimal management of hydrogen network in a petrol refinery. The reconciled 
data strictly satisfied a set of mass balance equations employed in the formulation of the optimization 
problem. In Nguyen et al. [8], a model of an upstream petroleum plant was developed based on the reconciled 
data of material and energy streams. The process model employed in the data reconciliation was based on the 
conservation of mass and energy. In Özyurt and Pike [21], the simultaneous data reconciliation and gross 
error detection methods were applied to the chemical processes. The quality of the measured data was 
improved by calculating the reconciled data satisfying the process models. Although the effects of random 
and gross errors in the measurements are reduced, the conventional data reconciliation approach employs 
the models with no variations of parameters. For the systems with the variations of parameters, however, a 
more advanced modeling approach should be developed and included in the formulation of the data 
reconciliation problem.  

Due to some advances in the computational techniques, the partial differential equation (PDE) can be 
developed to describe the system behaviour within the computational domain. The PDE-based model can 
be used to predict the values of some variables such as temperature, concentration and so on [9-14] at 
different positions within the system. Haghshenasfard and Hooman [15] used the PDE to predict the rate of 
asphaltene deposition from crude oil. It was found that the rate of asphaltene deposition depended on various 
operating parameters such as temperature, Reynolds number and asphaltene concentration. Bayat et al. [16] 
predicted the fouling behaviour in an industrial shell and tube heat exchanger. The contours of coke 
concentration and velocity profile were calculated. Alshammari and Hellgardt [17] performed an analysis for 
hydrothermal conversion of heavy oil in a continuous flow reactor. The effects of radial mass transport were 
taken into account using the PDE. The temperature, concentration and velocity profiles in the reactor were 
computed. Rukthong et al. [18] performed the computational fluid dynamics (CFD) simulation of a pipeline 
for the crude oil transport. The effects of crude oil properties on the transport profiles were studied. 

The variations of parameters usually occur within the system in practice [18-20], e.g., variations of 
physical and chemical properties within the system. In this paper, the PDE-based model is employed in the 
formulation of the data reconciliation problem. Unlike the conventional data reconciliation approach [21] in 
which the models with constant parameters are considered, the PDE-based data reconciliation approach 
includes in the problem formulation the variations of parameters within the system in order to describe the 
behaviour of the real system. 

The paper is organized as follows. The experimental setup is presented in Section 2. Section 3 describes 
the modeling equations. The boundary conditions are described in Section 4. The optimization problem 
formulation is presented in Section 5. The results and discussions are presented in Section 6. Finally, the 
paper is concluded in Section 7. 
 

2. Experimental Setup 
 
The PDE-based data reconciliation approach is experimentally applied to a case study of temperature 
measurements for a refinery process as shown in Fig. 1.  
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Fig. 1. Flowchart of the experimental setup. 
 

In the experimental setup, the crude oil obtained from an oil refinery in Thailand is contained in a 1 3m  
feed tank equipped with a stirrer. The crude oil is supplied to a horizontal pipe for temperature measurements 
using a feed pump. The pipe length is 3 m and the inner pipe diameter is 0.3 m. At the inlet, the temperature 
is increased to 330 K using a heater. The values of temperature at 18 measurement positions are measured as 
shown in Fig. 2.  
 

 
 
Fig. 2.  Horizontal pipe with 18 measurement positions (PT1-PT18).  
 

The system is operated for 10 minutes before the steady-state values of temperature are collected. At the 
outlet, the temperature is reduced to 303 K using a cooler. The values of the measured temperature are 
collected using a data logger. The data reconciliation is performed using a computer. The modeling equations 
are developed and solved in COMSOL Multiphysics 3.5a using the optimization module [23].  
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3. Modeling Equations 
 
The flow is in the turbulent regime. The flow behaviour can be described by the following Reynolds-Averaged 
Navier-Stokes (RANS) equations [24, 25] 
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where   is the density, u  is the velocity vector, p  is the pressure,   is the dynamic viscosity and F  
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by comprehensive data fitting for a wide range of turbulent flows [24, 25]. The energy balance consists of the 
convection and conduction which can be expressed as  
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where 
pC  is the specific heat capacity, T  is the temperature and   is the coefficient of heat 

conductivity. The modeling equations can be summarized in Table 1.  

 
Table 1. Modeling equations.  
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The variations of parameters usually occur within the system in practice, e.g., variations of physical and 
chemical properties within the system. The PDE-based data reconciliation approach includes in the problem 
formulation the variations of parameters within the system in order to describe the real system’s behaviour. 
In this paper, the parameters for the flow behaviour and heat transfer as shown in Table 2 are allowed to 
vary with the temperature [26] at each position within the system.  
 
Table 2. Variations of parameters. 
 

Physical properties Values 

Density (kg/m3) 20)0.59(840  Tρ  

Specific heat capacity 
(J/kg oC) 

23220668755141143096 TTC p ...   

Dynamic viscosity (Pa.s) 32 3800163038072710383685715467419 )(.)(.)(..  TTT  
Coefficient of heat 

conductivity (W/m oC) 
)0.00054-0.16276(1 T  

 
4. Boundary Conditions 
 
For the Reynolds-Averaged Navier-Stokes (RANS) equations, the velocity is 4.85 m/s at the inlet. At the 
outlet, a Dirichlet condition on the pressure is specified as  
 

      o
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                                                                         (6) 
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where TI  is the turbulence intensity and TL  is the turbulent length scale. The value of turbulence 

intensity TI
 is 0.05 for the fully turbulent flow. The turbulent length scale TL

 is a measure of the size of 

eddies that are not solved. For the fully developed flow in pipe, the value of turbulent length scale TL
 equals 

L070.  where L  is the inner pipe diameter. At the outlet, the following convective flux conditions are 
specified for the turbulence variables 
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where n  is the normal vector. The logarithmic wall function [25] is applied to the wall. For the energy 
balance equations, the temperature at the inlet is 330 K. At the outlet, the heat flux vector q

 across the 

boundary
 
is due to convection as 
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This boundary condition is a useful condition in the convection-dominated energy balance. The 

boundary conditions can be summarized in Table 3. 
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Table 3. Boundary conditions. 
 

Types Inlet Outlet 

Reynolds-Averaged 
Navier-Stokes equations 

4.85 m/s o
pp   

k  turbulence model 

2

2

3
)u( TIk   

TL

k
C

23

43

/

/

   

0k.n  

0.n  

Energy balance equation  330.00 K n.unq TC p  

 
5. Optimization Problem Formulation 
 
In the experiments, the values of temperature are measured at 18 measurement positions as shown in Fig. 2. 
After the values of temperature have reached the steady state, 100 data sets of the measured temperature 

measuredijT ,
 are collected where the subscript i  denotes the measurement position and j  denotes the data set. 

The objective function of the optimization problem is the following least-squares minimization between the 

measured temperature 
measuredijT ,  

and the reconciled temperature 
reconcilediT ,  
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where 

i  is the standard deviation at each measurement position i ,
 

18N  is the number of 

measurement positions and 100M  is the number of data sets. The objective function (10) is solved subject 
to the following constraints; (i) modeling equations in Table 1, (ii) variations of parameters in Table 2, (iii) 
boundary conditions in Table 3 and (iv) constraints on the minimum and maximum values of the reconciled 

temperature reconcilediT , . The PDE-based data reconciliation approach is solved in COMSOL Multiphysics 3.5a 

using the optimization module. The details on solving the optimization algorithm can be found in [22, 23]. 
All of the computations have been performed using Intel Core i3, 2.20 GHz and 4GB RAM. 
 

6. Results and Discussions 
 

6.1. Mesh Sensitivity Analysis and Model Validation 
 
In this section, the mesh sensitivity analysis and the model validation are presented. The mesh sensitivity 
analysis is shown in Fig. 3. For a proper simulation setup, the simulation quality should not be affected by 
further increasing the number of mesh elements.  
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Fig. 3. Mesh sensitivity analysis. 
 

Figure 4 shows the simulation temperature at different positions on the centerline. The simulation results 
are nearly similar as the number of mesh elements is increased from 52,972 to 119,624 so the number of 
mesh elements 52,972 is selected in this case.  
 

 
 
Fig. 4. Simulation temperature at different positions on the centerline. 
 

The model validation is performed by comparing the simulation results with the experimental data 
obtained from the calibrated thermocouple as shown in Fig. 5. The values of the simulation temperature at 
different positions on the centerline are in good agreement with those of the experimental data so the 
developed model can be used for further simulations.       
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Fig. 5. Comparison between the simulation temperature and the temperature measured by the calibrated 
thermocouple. 
 
6.2. PDE-Based Data Reconciliation 
 
In the real industry, the regular thermocouples usually contain the random errors in measurements. 
Therefore, the proposed data reconciliation approach has been developed to deal with the measurement 
errors. In this section, the regular thermocouples with random errors in measurements are used in order to 
test the effectiveness of the proposed data reconciliation approach. Figure 6 shows the values of the measured 
temperature and the reconciled temperature at the inlet (measurement position 2), within the domain 
(measurement position 8) and at the outlet (measurement position 17). It can be observed that the values of 
the measured temperature scatter around those of the reconciled temperature due to the effects of random 
errors.   
 

 
     

   (a) measurement position 2     (b) measurement position 8 
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      (c) measurement position 17  
 

Fig. 6. Measured and reconciled temperature at (a) measurement position 2 (b) measurement position 8 
and (c) measurement position 17. 
 

Figure 7 shows the averaged values of the measured temperature and the values of the reconciled 

temperature at different positions on the centerline. The error bars indicate 961.  standard deviations of the 
mean. In contrast to the averaged values of the measured temperature, the PDE-based data reconciliation 
approach gives the reconciled temperature profile satisfying the PDE-based model. 
 

 
Fig. 7. Averaged measured temperature and reconciled temperature at different positions on the 
centerline. 
 

Figure 8 shows the values of the reconciled temperature on the cross-sectional plane at axial position 1.5 
m from the inlet. It can be observed that the values of the reconciled temperature decrease with increasing 
radial positions due to the transfer of heat in radial direction.  
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Fig. 8. Reconciled temperature on the cross-sectional plane at axial position 1.5 m from the inlet. 
 

Figure 9 shows the values of the reconciled temperature on various cross-sectional planes. The 
temperature profiles on 5 cross-sectional planes are displayed. The proposed data reconciliation approach is 
based on the PDEs so the values of the reconciled temperature can be computed in axial and radial directions 
within the computational domain. 
 

 
Fig. 9. Reconciled temperature on various cross-sectional planes. 
 

The comparison between the PDE-based data reconciliation approach and the conventional data 
reconciliation approach [21] using the same type of the objective function (least-squares minimization) is 
shown in Table 4. Nearly the same values of the reconciled temperature at the inlet and outlet are obtained. 
In the conventional data reconciliation approach, however, the system is assumed to be lumped so the values 
of the reconciled temperature can only be computed at the inlet and outlet positions. Unlike the conventional 
data reconciliation approach, the PDE-based data reconciliation approach includes the variations of 
parameters within the system in order to describe the real system’s behaviour. The values of the reconciled 
temperature can be computed within the computational domain as shown in Fig. 9. 
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Table 4. Comparison between the PDE-based data reconciliation approach and the conventional data 
reconciliation approach. 
 

Approaches 
Reconciled temperature at  

the inlet (PT2) 
Reconciled temperature at  

the outlet (PT17) 

PDE-based data reconciliation 
approach 

330.00 K 328.78 K 

Conventional data 
reconciliation approach [21] 

331.05 K 328.45 K 

 
The block diagram for the industrial applications of the proposed PDE-based data reconciliation 

approach is shown in Fig. 10. The proposed data reconciliation approach includes in the problem formulation 
the variations of parameters within the system in order to describe the real system’s behaviour. The reconciled 
values can be computed within the computational domain so they can be used as the data in the 
troubleshooting, equipment analysis and maintenance of the industrial processes. Furthermore, the reconciled 
values can be used as the data in the process optimization.  
 

 
 
Fig. 10. Block diagram for the industrial applications of the proposed PDE-based data reconciliation 
approach. 

 
Figure 11 shows the comparison between the values of the reconciled temperature at different positions 

on the centerline and the values of the temperature measured by the calibrated thermocouple. Although the 
measurement data with random errors are used as the input to the developed data reconciliation approach, 
the developed data reconciliation approach can calculate the values of the reconciled temperature that are in 
good agreement with the values of the temperature measured by the calibrated thermocouple. For this reason, 
the developed data reconciliation approach is useful in the real industrial applications.   
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Fig. 11. Comparison between the reconciled temperature and the temperature measured by the calibrated 
thermocouple.  

 
7. Conclusions 

 
In this paper, the PDE-based data reconciliation approach has been developed to improve the quality of the 
measured data. Unlike the conventional data reconciliation approach in which the system is assumed to be 
lumped, the PDE-based data reconciliation approach includes in the problem formulation the variations of 
parameters within the system. The experiment is conducted to demonstrate the implementation of the 
developed data reconciliation approach. The values of the reconciled temperature can be computed within 
the computational domain based on the PDE-based model. 
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