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Abstract. The relationship between land surface temperature (LST) and land use in Nakhon Ratchasima was 
studied using data gathered from three satellite images from Landsat-5 (30th January 1992), Landsat-8 (9 May 
2016) and THEOS (17th February 2016). There were four categories of land use: built-up area, green area, 
bare land and water sources. The split-window concept was used to estimate the LST. In 1992, Nakhon 
Ratchasima city in Thailand comprised 47.76% built-up area, 37.45% green area, 13.19% bare land and 1.60% 
water sources. By 2016, the built-up area had increased by 23.04%, the green area had decreased by 16.66%, 
bare land had decreased by 6.81%, but water sources had increased by 0.43%.  Moreover, in 1992 the mean 

LST was 25.43 C for built-up areas, 24.44 C for green areas, 24.97 C for bare land and 24.75 C for water 

sources. However, by 2016 the LSTs had increased for each category: 28.74 C for built-up areas (+3.31 C), 

27.20 C for green areas (+2.76 C), 28.11 C for bare land (+3.14 C) and 27.72 C for water sources (+2.97 

C). The findings indicated that the LSTs increased with the pace of urbanization and changes in land use. 
Linear regression analysis revealed that built-up land had a positive correlation with LST, where a 1% increase 

in built-up area increased its LST by 0.146594 C.  
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1. Introduction 
 
Urbanization affects the environment at the global scale and can especially increase problems associated with 
climate change [1-3]. At the local level urbanization causes direct environmental problems, including city 
drainage, air and water pollution [4], excessive and wasteful usage of natural resources [5], reductions in green 
areas [6-7] and higher land surface temperatures [1, 8-9]. These factors contribute to the phenomenon known 
as the urban heat island (UHI).  UHI is linked to city power consumption [3, 10], and thus affects local and 
global climate change [1, 11-12]. Land Surface Temperature (LST) is a critical factor that determines air 
temperature in the lower layers of the atmosphere, [13-22]. The LST is a key factor for the study of urban air 
temperatures and has been instrumental in characterizing the emerging phenomenon of the Urban Heat 
Island (UHI) [23-30]. 

The LST is calculated from the reflection and radiation of objects on the Earth’s surface [10] and so 
represents the Earth’s surface heat. It can be measured using remote sensing images using satellite infrared 
wave detection. The estimated LST depends on the albedo, ground cover plants and soil humidity [10, 31-
34]. Most objects in urban areas are buildings with high surface albedo, where reflection depends on 
construction materials. In addition, urban activity uses much more energy than rural activities, including 
transportation and building energy consumption [11, 35-36], driving higher temperatures in urban 
environments.  

The relationship between urbanization and LST has been widely studied, e.g. [1, 29, 37-38] and UHI e.g. 

[2, 30, 39-40]. The topic has also been studied in Thailand, e.g. using remote sensing technology from 
satellite imagery to assess the UHI in large cities where large changes in land utilization have 
occurred, including Bangkok [41-45], Chiang Mai [43,46], Songkhla [43] and Mahasarakram [16]. 
However, Nakhon Ratchasima has not been studied, despite its rapid urbanization and major 
changes in land utilization. Changes in LST were therefore analyzed and used as a basis for predicting or 

the effects of urban expansion and changes in land use, which need to be considered in urban development 
plans in order to prevent or mitigate future environmental problems, and also to monitor and consider 
introduction of preventive measures [11-12].  

The city of Nakhon Ratchasima is the regional centre of northeastern Thailand, largely due to its location. 
In 1977 government policy designated the city as a ‘center of prosperity’ to boost the regional economy as 
part of its decentralization agenda. Nakhon Ratchasima is now one of the country’s three fastest expanding 
cities [5] in terms of both its economy and population density (3,500 peoples/km2, excluding the estimated 
22% of the domiciled population who are unregistered [47]. Increasing construction of buildings and roads 
for businesses and housing has encroached on surrounding green areas and agricultural land [5]. Urban 

temperatures are increasing; from 1951 to 2018 the mean day and night temperatures were 34C and 24C, 
respectively. Today Nakhon Ratchasima city is the region’s largest city and the fifth largest in Thailand. 
Continuing government promotion of the city as an economic centre and logistic hub is encouraging both 
horizontal and vertical urban expansion, with taller, larger buildings, and loss of green areas. Increasing energy 
demand contributes to increased emissions of greenhouse gases and climate change impacts.  

Accordingly, the current study of land use patterns and analysis of their impact on Nakhon Ratchasima’s 
LST applied remote sensing technology, including Landsat-5 (30th January 1992), Landsat-8 (9th May 2016) 
and THEOS (17th February 2016)satellites. The interpretation identified different categories of land use 
through supervised classification using the ENVI programme. Land surface temperature in the thermal 
infrared band shown on the images was interpreted using the split window technique. This method led to the 
analysis of land surface temperature for each land use type. The data provide an important basis to inform 
planning future land use and urban expansion to minimize or prevent further increases in LST and mitigate 
climate change impacts.  
 

2. Materials and Methods 
 
2.1. Study Area 
 
The study area (37.5 km2) (Fig. 1) covered Nakhon Ratchasima city, located in the Muang Nakhon Ratchasima 

district, between 14-16 N (latitude) and 101-103 E (longitude) at approximately 174-206 m above mean sea 
level. The terrain around the city consists of a plain in the north, which has a flooding problem in some areas, 
a high hill in the south that is connected to a military base and the national conserved forest, a plateau to the 
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west and a basin in the east. The Lam Ta Kong River flows through the city for a total 12 km of the river’s 
length; the river banks were formerly major agricultural areas [7]. 

 

 
 
Fig. 1. Nakhon Ratchasima City Territories. 
 

However, Nakhon Ratchasima’s weather in the past 30 years (1985-2014), obtained from Nakhon 
Ratchasima Meteorological Station [48], reported that the average was 27.46°C Celsius. Thhe highest 
temperature was in April (30°C Celsius) and lowest in December (23.9°C Celsius). Average land surface 
temperature was 21.07°C Celsius which was the highest in September (23.52°C Celsius) and lowest in 
December (16.64°C Celsius). The wind speed was 2.01 knot. The average evaporation rate was 4.85 mm per 
day and reached 5.6 mm in the dry season. 
 
2.2. Evaluation of Land Usage 
 
The land usage was evaluated by interpreting satellite images [6, 49], Landsat-5TM (30th January 1992; at 09.55 
am) using a thematic mapper system at 30-m image resolution and THEOS (17th February 2016; at 10.26 am) 
with a Multispectral 15-m image resolution, using the ENVI programme by supervised classification and 
digital number (DN) with maximum likelihood analysis. Even though the satellite imagery were derived from 
different sources, their resolution is sufficiently high to be used to study land utilization in urban areas [49-
55]. In addition, both images were taken during the same season which is a similar time intervals, and are 
therefore comparable in terms of light or heating values, which have an impact on classification of image 
data. The land use data was additionally validated and adjusted by incorporating the geographic information 
data of the Nakhon Ratchasima municipal government (2016) [56] and field area inspection with more than 
90% confidence [55]. 

Land usage was divided into four categories based on the USGS Circular 671 [49]: built-up areas 
(community areas and buildings); green area (agricultural land, forest and rangeland); bare land (wasteland, 
unused areas); and water sources (natural water sources and built-up water bodies). Some areas (totaling 6.7 
km2) were omitted because the land use categorization was ambiguous due to the similar reflection of the 
images such as combined city canal and some water sources.  
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2.3. Evaluation of the LST 
 
The LST was analyzed using remote sensing images [57] from Landsat-5TM (30th January 1992) and Landsat-
8 (9th May 2016) with thermal infrared band (TIB: Landsat-5 Band 6 and Landsat-8 Band 10 and 11) from 
NASA’s Earth Observing System using the ENVI programme with the Split window concept. The process 
is summarized below in Fig. 2. 
 

 
Fig. 2. Methodology, approach and process. 
 

(A) Albedo and LST measurements were correlated and an average relation established. Albedo is a 
parameter quantitatively describing the absorption/reflection behavior of a surface [58]. The measurement 
may differ depending on area type, vegetative cover and soil moisture [33-34]. For the brightness temperature, 
the LST was evaluated from thermal infrared data detected directly from the satellite images. The data could 
then be converted into degrees Kelvin using Eq. (1); [59] 
 

 T =
K2

ln(
K1
Lλ

+1)
, (1) 
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where T is the effective at-sensor brightness temperature (Kelvin), K2 is the calibration constant 2 (Kelvin) 
(607.76 K for Landsat-5TM Band 6 and 774.8853 K, 480.8883 K for Landsat-8 Band 10 and 11, respectively), 
K1 is the calibration constant 1 (W/m2 sr µm) (1,260.56 W/m2 sr µm for Landsat-5TM Band 6 and 1,321.0789 
W/m2 sr µm and 1,201.1442 W/m2 sr µm for Landsat-8 Band 10 and 11, respectively), Lλ is the spectral 
radiance at the sensor’s aperture (W/m2 sr µm) and ln is the natural logarithm. 

An object’s spectral radiance is dependent on wavelength and the ratio between absorbed reflectance and 
transmittance. Objects with a high absorbance would also have a high radiance, as shown in Eq. (2) [59]; 
 

 Lλ =  (
𝐿𝑀𝐴𝑋𝜆−𝐿𝑀𝐼𝑁𝜆

𝑄𝑐𝑎𝑙𝑚𝑎𝑥−𝑄𝑐𝑎𝑙𝑚𝑖𝑛
) (𝑄𝑐𝑎𝑙 − 𝑄𝑐𝑎𝑙𝑚𝑖𝑛) + 𝐿𝑀𝐼𝑁𝜆 (2) 

 
where L  is spectral radiance at the sensor’s aperture (W/m2 sr µm), Qcal is quantized calibrated pixel value 

(DN), Qcalmin is minimum quantized calibrated pixel value corresponding to LMIN𝜆 (DN), Qcalmax is 

maximum quantized calibrated pixel value corresponding to LMAX𝜆 (DN), LMIN𝜆 is Spectral at-sensor 

radiance that is scaled to Qcalmin (W/m2 sr µm) and LMAX𝜆 is Spectral at-sensor radiance that is scaled to 
Qcalmax (W/m2 sr µm) [59] 
 

(B) For the Land Surface Emissivity (LSE), [58] an object’s radiation is low compared to the albedo 
because the Earth’s surface cannot absorb all the energy and so the LSE was calculated from the fractional 
vegetation cover using the differential vegetation index [52], as shown in Eq. (3) 
 

 LSE =  εs(1 − FVC) +  εv × FVC, (3) 
 
where ε_s is the lowest emissivity (1.238 for Landsat-5TM Band 6 and 0.10033 for Landsat-8 Band 10 and 
11), ε_v is the highest emissivity (15.303 for Landsat-5 Band 6 and 22.0018 for Landsat-8 Band 10 and 11) 
and FVC is the fractional vegetation cover, calculated from the normalized difference in vegetation in each 
cell, as shown in Eq. (4); 
 

 FVC =  
NDVI − NDVIs

NDVIv − NDVIs
, (4) 

 
where NDVIV is the NDVI of vegetation or highest value of NDVI, NDVIS is the NDVI of soil or lowest 
value of NDVI and NDVI is the normalized difference vegetation index, derived as shown in Eq. (5) [60]; 
 

 NDVI =  
ρNIR − ρRED

ρNIR + ρRED

, (5) 

 
where ρNIR and ρRED are the reflection of vegetation under near infrared and red, respectively, and ρ is the 
reflection of soil cover, which depends on wavelength and the ratio of absorbance to reflection. Objects with 
a high reflection have a low absorbance [59] as shown in Eq. (6);  
 

 ρ
λ

 =  MρQcal  +  Aρ (6) 

 
where M_ρ is the reflectance multi-band and A_ρ is the reflectance add-band. 
 

(C) Atmospheric water vapor (AWV) is a key parameter for the global hydrological cycle, and central to 
studies of global climate change, land surface-atmosphere energy exchange and watershed management [61]. 
AWV was determined from the ability to pass through the atmosphere in thermal infrared using the 
brightness temperature of the linear regression, The AWV was evaluated from thermal infrared data of the 
Spinning Enhanced Visible and Infrared Imager onboard Meteosat Second Generation satellite (assuming 
that the atmosphere is unchanged over the neighboring pixels where the land surface temperature and 
emissivity change). The split-window covariance-variance ratio (SWCVR) method relates AWV to the ratio 
of the upward transmittances of two thermal infrared bands, as shown in Eq. (7a, 7b); 
 

 AWV =  (a + b) (
τj

τi
), (7a) 
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and  
τj

τi
 ≈  Rji  =  

∑ (Ti,k−T̅i)(Tj,k−T̅j)
N
k=1

∑ (Ti,k−T̅j)
2N

k=1

, (7b) 

 
where, a and b are coefficients derived from simulation; τ is the channel effective transmittance; the subscripts 
i and j represent, respectively, the first and second channels of Thermal InfraRed Sensor (TIRS); N is the 
number of adjacent pixels (excluding water and cloud pixels) in a window size (i.e., n × n), Ti,k and Tj,k are 
the brightness temperatures (K) of the channels i and j for the kth pixel, while i T and j T are the mean or 
median brightness temperatures of the N pixels for the two channels. 

Note that, τj/τi is not fully equal to Rji due to the variation of the land cover and emissivity of both i and 
j channels for the N pixels. [61] 
 

(D) The LST was then calculated from the brightness temperature, LSE and AWV as shown in Eq. (8);  
 

 LST =  (T10 + C10 − T11) + (T10 − T11)2C0 +   

 (C3 + C4wv)(1 − ε) + (C5 + C6AWV)∆ε (8) 
 

where T10 and T11 are the brightness temperature of the TIB, ԑ is the mean LSE of the TIB, Δԑ is the difference 
in LSE of the TIB, and C0 to C6 are the split window concept constants (the constants remain the same under all 
conditions) [58] (Table 1).  
 
Table 1. Constants of the split window concept. 

 

Constant C1 C2 C3 C4 C5 C6 C7 

Value -0.678 1.378 0.183 54.30 -2.238 -129.2 16.40 

 
2.4. Relationship of the LST and Land Use 
 
The relationship between LST and land use was analyzed by randomly selecting 30 points from each land use 
category to study the characteristics and different LST patterns within each land use category. The data were 
used to construct a linear regression equation by the least square method [60], as shown in Eq. (9), after 
calculating the Pearson’s correlation coefficient at a statistical significance of p < 0.01, as shown in Eq. (10); 
 

 r =  
n ∑ XY − ∑ X ∑ Y

√[n ∑ X2−(∑ X)2][n ∑ Y
2

−(∑ Y)2]

 (9) 

 

 Y = a + b(X) (10) 
 
where r is the Pearson’s correlation coefficient, Y is the calculated mean LST, X is the ratio or percentage of 
urban areas and buildings (calculated during the satellite interpretation process), a is the Y axis point of 
intersection and b is the slope of the equation. 
 

3. Results 
 
3.1. Land Use Pattern in Nakhon Ratchasima City 
 
Data based on satellite image interpretation showed 92.37% confidence level and a Kappa Coefficient of 0.89 
for 1992; for 2016, the confidence level and Kappa Coefficient were 92.13% and 0.88, respectively. The 
largest area of the city was occupied by community settlements and buildings (47.76% of the total area), 
followed by green areas (37.45%), bare land (13.19%) and water bodies (1.60%) (Fig. 3.). Community 
settlements and buildings are dispersed throughout the city areas, except for the plateau located in the 
northeast part of the city, which mainly comprises agricultural areas growing mostly vegetables. Bare land is 
distributed across the community areas.  
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Nakhon Ratchasima has and still is rapidly expanding economically, with a concomitant high degree of 
urbanization which has brought major changes in land use over the last 24 years. Community settlements and 
buildings have expanded to cover 70.80% of the total area (1.72% increase p.a.), while the green area has 
been reduced to only 20.79% (2.52% reduction p.a.) and bare land has been reduced to 6.38% (3.10% 
decrease p.a.) However, water bodies have increased marginally (1.04% increase p.a.) as shown in Fig. 3. 
 

 
 
Fig. 3. Land use in Nakhon Ratchasima city between 1992 and 2016. 
 
3.2. LST of Nakhon Ratchasima City 
 

Analysis of Nakhon Ratchasima city’s LST revealed that on 30 January 1992 it was 24.74 C, with the mean 

LST of community settlements and buildings being the highest (25.43 C), then bare land (24.97 C), water 

bodies (24.75 C) and green areas (24.44 C) as presented in Table 2 and Fig. 4. 
 
Table 2. Mean and range of LST for each land use category in Nakhon Ratchasima City (1992 and 2016). 
 

 
Land use 

LST 

1992  2016 

Maximum Minimum Mean  Maximum Minimum Mean 

Built-up area 27.68 23.82 25.43  31.25 27.56 28.74 
Green area 25.98 22.50 24.44  28.89 25.15 27.20 
Bare land 26.83 22.94 24.97  29.74 26.68 28.11 
Water Sources 26.83 22.50 24.75  29.44 25.39 27.72 

 

The highest LST (28.10 C) was located in the old city area, east of the town hall on Mahatthai Road. 
This area has a high density of residential, commercial and government office buildings and is an important 
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commercial and economic hub.  Boong Ta Lua Water Park (0.48 km2) had the lowest LST. The water park 
is the city’s main public park and also serves as the main water storage body for the adjacent military base. 

Analysis of the city’s LST from remote sensing images of Landsat-8 on 9 May 2016 revealed a 3.30 C 

increase in the mean LST to 28.04 C from 1992 to 2016. Community settlements and buildings had the 

highest mean LST (28.74 C), followed by bare land (28.11 C), water sources (27.72 C) and green areas 

(27.20 C) (Table 2 and Fig. 4). 
 

 
 
Fig. 4. LST of Nakhon Ratchasima city in 1992 and 2016. 
 

By 2016, the mean LST in the city had increased for all land use categories, compared to 1992 data. 

Community settlements and buildings showed the highest increases (3.32 C), followed by a 3.14 C, 2.97 C, 

and 2.76 C increases for bare land, water sources and green areas, respectively. 

When analyzed based on area, the Terminal 21 shopping mall had the highest mean LST (31.25 C). This 
is a large shopping mall (approximately 0.05 km2) and had a similar LST as high as The Mall, another large 
shopping mall in the province (approximately 0.09 km2). The areas around the municipal government, the 
building area for the Klang station shopping mall, and east of the petrol station at the north, next to the 

second transport station of Nakhon Ratchasima city, all had a mean LST of about 31 C with the land use in 
these areas being primarily commercial activities and services, including community settlements and building 
an immersive new shopping mall. These all reflect the recent rapid economic expansion and development of 
the city. The lowest mean LST was located at Boong Ta Lua Water Park (22.50 º C). 
 
3.3. Relationship between LST and Land Use in Nakhon Ratchasima City  
 
Analysis of the relationship between LST and land use revealed that the community settlements and buildings 
was highly related to the LST (Pearson’s correlation coefficient = 0.8139; P < 0.01). These data were used to 
construct a linear regression equation, shown in Eq. (11). The equation had a coefficient of determination of 
0.6625. 
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 y = 19.09205 + 0.146597x (11) 
 
where x is the built-up area (%) and y is the mean LST (ºC). 

The obtained linear regression between the LST and the changing sizes of community and building areas 
revealed that the mean LST increased as the proportion of community and building areas increased (Fig. 5). 
In 2016, community and building areas comprised 70.80% of the total area with a mean LST of about 29.35 
ºC. If this area is increased to 80% in the future, the mean LST would be projected to increase to 
approximately 30.81 ºC, or a rate of 0.146597 ºC for every 1% increase in the ratio of community and building 
areas to total area. 
 

 
 
Fig. 5. Relationship between the built-up area (x) and mean LST (y). 
 

Considering the ratio of changes in area of land use and the mean LST, all green areas of the city had a 
four-fold lower ratio than that of the community and building areas, with a difference in their mean LST of 
2.76 ºC. Due to the increased community and building areas, the mean LST was increased by 3.32 ºC (Fig. 
6.).  
 

4. Discussion and Conclusion 
 
At an overall level of 90%, the accuracy of the satellite imageries interpretation obtained from this study were 
considered reliable [29-30, 55, 60]. The data were in accordance with several research studies focusing on the 
overall accuracy of identifying land use categories using satellite imagery. For example, a study reported by 
English Bazar Municipality of Malda District [29] cited accuracy levels of 90.21% (2010) and 93.62% (2014). 
Another study regarding land use change in Tehran, Iran [30] indicated an overall accuracy of 93.41% in 2010; 
a third report from the north-western coastal desert of Egypt [62] cited an overall accuracy of 92.53% (1988), 
93.77% (1999) and 97.30% (2011). 

The research supports the hypothesis that LST increases with increased urbanization, and especially as a 
result of expansion of communities and buildings. This is in accordance with the findings of previous studies. 
e.g. [1, 4, 8, 63-64, 65-72] showing that the highest temperatures are found at large (concrete) buildings such 
as shopping malls in particular as well as other large concrete constructions such as petrol stations, car parks, 
commercial stalls and community areas, all of which are distributed throughout the city centre and the old 
city. These buildings absorb and release thermal admittance, and also have a high reflection of the surface 
albedo [3, 13, 39]. [5] stated that the commercial sector was located at the city centre where there was a high 
density of buildings and populations. These areas have high mean temperatures compared to other areas of 
the city. Moreover, more energy is used for air conditioners and traffic in the city centre, which further 
increases the increased LST [1, 35].  
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Fig. 6. Mean LST in each land use of Nakhon Ratchasima city in 1992 and 2016. 
 

The results of LST in 1992 obtained from satellite image interpretation in this study was in accordance 
with the meteorological data for the same period [48]. The data revealed that in 1992, the average LST was 
297.95 K (24.80 °C) which was close to the satellite data interpretation projection of 297.89 K (24.74 °C). In 
May 2016, the average LST was 304.15 K (31 °C), while interpretation of satellite image data projected 301.19 
K (28.04 °C). The average LST from meteorological data was approximately 2.96 K (3 °C) higher than the 
satellite image interpretation. This was due to higher summer temperatures [73]. The evaporation rate for the 
area on 9 May was higher (6.2 mm) than the average dry season evaporation rate (5.6 mm). The data from 
satellite was obtained during the day (10:31 am) when both temperature and evaporation rate were low. Soil 
moisture retained the temperature within the soil which reduced the temperature when the image was taken 
to below the average daytime LST [33-34]. The mean difference between LST obtained from satellite image 
interpretation and the actual temperature obtained from the area was found to be below 3 K, which is 
considered acceptable according to many studies (e.g. [74-75]). 

The lowest LST was found for the green areas because vegetation helps reduce the LST through 
evapotranspiration, increasing atmospheric and soil humidity [9, 36, 76]. Moreover, chlorophyll in plants 
reduced reflection, leading to a lower LST [38, 77]. This study found a negative correlation between LST and 
the proportion of green area land use. When the proportion of green areas increased, LST decreased, which 
is in agreement with previous studies [3, 36, 65, 77] which associated reductions in LST with increasing 
ground covering vegetation [28, 32, 38, 76]. A previous study in Gabornone, Botswana reported the 
difference in the LST betwen green and city centre areas was about 2-4 ºC [29], whilst in Singapore where 
there was a higher difference of 4.01 ºC between green areas and the city centre [74], reflecting the fact that 
Singapore city center has a higher density of buildings, both horizontally and vertically. 

The proportion of bare land and water bodies are both low in Nakhon Ratchasima city and so they do 
not markedly affect the LST directly; however, this could change with increasing urbanization. When bare 
land is transformed to community settlements and buildings their reflectivity is dependent on the materials 
used to cover the bare land; building materials such as concrete have a high reflectance. Water sources have 
a lower mean LST due to the cooling effect of water evaporation from the water surface. Adjacent areas 
receive humid air, which lowers the LST [3, 76]. 

Urban planning should aim to reduce urban sprawl; land use planning is therefore crucial for managing 
city areas to control expansion and ensure appropriate land use. The provision of conserved and protected 
green areas to preserve the ecosystem would help control the city’s LST. However, to specify the effect of 
land use change on temperature per unit is rather challenging due to the multiplicity of contributing factors, 
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including climate, terrain, season, city pattern and city composition. Therefore, further research is needed to 
provide a more precise projections of how land use change might affect LST. 
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