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Abstract. The car sequencing problem (CSP) is addressed in this paper. The original 
environment of the CSP is modified to reflect real practices in the automotive industry by 
replacing the use of single-sided straight assembly lines with two-sided assembly lines. As a 
result, the problem becomes more complex caused by many additional constraints to be 
considered. Six objectives (i.e. many objectives) are optimised simultaneously including 
minimising the number of colour changes, minimising utility work, minimising total idle 
time, minimising the total number of ratio constraint violations and minimising total 
production rate variation. The algorithm namely adaptive multi-objective evolutionary 
algorithm based on decomposition hybridised with differential evolution algorithm 
(AMOEA/D-DE) is developed to tackle this problem. The performances in the Pareto 
sense of AMOEA/D-DE are compared with COIN-E, MODE, MODE/D and MOEA/D. 
The results indicate that AMOEA/D-DE outperforms the others in terms of convergence-
related metrics. 
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1. Introduction 
 
A car sequencing problem (CSP) has attracted much attention from car manufacturers and researchers for 
many decades. The CSP practised by automotive manufacturers was first elaborated in a scientific manner by 
Parrello, et al. [1]. The classical version of the CSP consists in establishing the daily launching order of a set 
of cars with different types and options (e.g. sunroof, a navigation system, camera, etc.) to be produced on 
the mixed-model final assembly line to achieve a predefined goal without violating capacity constraints. The 
CSP can be broadly viewed as a subset of the job shop scheduling problem.   

RENAULT, the renowned French car manufacturer, articulated in the 2005’s ROADEF challenge that 
the CSP in a modern car factory must consider three major shops rather than taking into account just the 
constraints and objectives related to the assembly shop like in the classical CSP. These three shops ordered 
sequentially include the body fabrication shop where the chassis of the cars are produced, the paint shop 
where the cars are painted by workers and robots, and the assembly shop where different options are installed 
in the cars [2]. Moreover, most car manufacturers put great efforts in the order-taking process to please 
customers by shortening production lead time and offering a large variety of options.      

The CSP is a strong NP-hard problem. The CSP was used to consider as a constraint satisfaction problem 
in which different priorities could be given to the constraints. Recently, Kis [3] demonstrated that the problem 
was rather well-match with a combinatorial optimisation problem, even the ratio-constraint alone was taken 
into account. Adding more constraints involving in the body fabrication shop and paint shop into the classical 
CSP enhances the complexity of the problem dramatically. The brute force approaches of constraint 
programming or integer programming may not be effective enough to solve the problem since the software 
could reach its limit when facing practical-sized problems [4]. 

Gagné, et al. [5] argue that the production equipment such as robots installed in the body fabrication 
shop is flexible enough to adjust its output rate to match with the demands given by the other two 
manufacturing shops. As a result, to reduce the complexity of the CSP, the constraints from the body 
fabrication shop could be neglected since their impacts on the daily car sequencing plan are not significant. 
In other words, the optimal solution obtained from solving the CSP in which taken into consideration only 
the objectives and constraints of the paint shop and assembly shop is sufficient to reflect the operations of 
the car production facility as a whole [6]. 

Most research on the CSP normally attempts to optimise only a single objective. However, in reality, 
various objectives are applicable and they should be optimised simultaneously. Moreover, the layout of the 
assembly line used in the traditional model is simplified by adopting the straight-shaped form. The 
assumption as such is unpractical because the car size is big which normally needs two workers to work on 
the opposite sides of the workstation to assemble different components on the same car to shorten line length 
and improve operations efficiency. Moreover, task times and precedence relationships of various car models 
are disregarded in the traditional model. Consequently, the capacity problem involved in the necessity of 
utility workers employed to help clear up all unfinished tasks leftover by regular workers is ignored. 

Recently, a more practical platform of the CSP was proposed by Chutima and Olarnviwatchai [7]. The 
major modifications given to the traditional model included using the two-sided assembly line (2SAL) to 
replace the straight-shaped assembly line (or the one-sided assembly line, 1SAL), explicitly considering 
precedence relationships and task times of different car models, and optimising multi-objectives 
simultaneously. This modified model was called “a car sequencing problem on the two-sided assembly line 
(CSP2SAL)”.     

The contributions of this paper are as follows. First, the environment of the CSP2SAL as presented in 
[7] is adopted and the problem with many (six) objectives is optimised simultaneously. Note that the term 
“many” in this context means more than three [8]. Second, since the size of the objective space is gigantic in 
many objective optimisation problems (MaOPs), the conventional evolutionary algorithms that bias their 
search directions based on non-dominated solutions on the Pareto fronts may not be a useful approach. 
Alternatively, the solution approach of multi-objective evolutionary optimization based on decomposition 
(MOEA/D) that partitions the MaOP into a set of single-objective subproblems and solve them 
simultaneously could be much more effective. Therefore, MOEA/D is adapted as a main structure of the 
solution technique. Third, the adaptive MOEA/D hybridised with the differential evolution algorithm 
(AMOEA/D-DE) is also proposed to effectively tackle the many-objective CSP2SAL (MaCSP2SAL) and 
prevents the premature convergence of the algorithm. To our best knowledge, no research paper has been 
attempted in this area before.  
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The remaining of this paper is organised as follows. A comprehensive review related to CSP and 2SAL 
is elaborated in Section 2. The distinct characteristics of the MaCSP2SAL are discussed in Section 3. Section 
4 explains the proposed algorithm (AMOEA/D-DE) to solve the MaCSP2SAL, followed by Section 5 that 
shows the experimental design. The experimental results and concluding remarks are given in Sections 6 and 
7, respectively. 
 

2. Literature Review 
 
2.1. CSP 
 
The CSP has attracted attention from practitioners and researchers for many decades since it paves the way 
for the advanced studies of formulations and solution searching strategies. The CSP was first formally 
elaborated by Parrello, et al. [1]. Initially, the CSP was formulated through a constraint satisfaction model to 
find an optimal sequence of different car models manufactured along an assembly line without violating 
contiguity constraints, while satisfying their demands. However, in practice, more appropriated formulation 
of the CSP should be a combinatorial optimisation problem rather since some of their constraints could be 
violated, but with additional penalty cost [6, 9]. 

The CSP was proved to be in the class of NP-hard combinatorial optimisation problems [3, 10]. As a 
result, the exact solution to large-scaled CSPs is difficult to achieve. Solnon, et al. [11] presented a 
comprehensive review of the exact and heuristic approaches for solving the CSP. It was indicated that the 
approaches that could provide a relatively good solution fairly quickly were more practical and useful than 
those that achieved an optimal solution at the expense of irrational computational time. Hence, unsurprisingly, 
various approximated solution approaches such as heuristics or metaheuristics became dominated in the good 
solution searching process of the CSP. 

Warwick and Tsang [9] classified the CSP into two types, i.e. solvable and unsolvable (no solution). In 
addition, previous research on the CSP was mainly emphasised on the solvable problem. However, the CSP 
should rather be considered as a partial constraint satisfaction problem in which constraints could be violated 
but at some predetermined cost. A generic genetic algorithm (GAcSP) in which the repair and hill climbing 
mechanisms were combined with the genetic algorithm (GA) to find the solutions of both solvable and 
unsolvable CSPs. Jaszkiewicz, et al. [12] described an adaptation of the genetic local search algorithm (GLS) 
in which a systematic approach to the construction of recombination operators, a heuristic for efficient initial 
solution creations, and a fast local search method was developed.  

Smith, et al. [13] formulated the CSP using a nonlinear integer programming and proposed two heuristics, 
i.e. steepest descent and simulated annealing (SA), and Hopfield neural network to solve the problem 
approximately. Briant, et al. [14] tackled the CSP via SA. The dynamic probabilities taken into account the 
best success rate of each move so far were used to find predominant neighbours for the given instance.  

Puchta and Gottlieb [15] compared three permutation-based local search algorithms which employed 
different acceptance criteria for moves. Two variants of threshold accepting approaches were superior to the 
greedy approach to solution quality and robustness. Prandtstetter and Raidl [2] proposed a new integer linear 
programming (ILP) formulation for small- and medium-sized CSP instances. For the large-sized problem, a 
general variable neighbourhood search (VNS) approach encompassed the large neighbourhoods examined 
using ILP technique were shown promising. Two local search approaches, i.e. very large neighbourhood 
search and very fast local search, were compared by Estellon, et al. [4]. They mentioned that sophisticated 
metaheuristics were impractical to solve the CSP. Ribeiro, et al. [16], Ribeiro, et al. [17] approximately solved 
the CSP using a set of heuristics based on the paradigms of the VNS and iterated local search (ILS) 
metaheuristics which were further enhanced with the intensification and diversification strategies. The 
optimised data structure for the effective implementation of heuristics was also proposed. 

Gottlieb et al. [6] compared a few heuristics used in the CSP, i.e. greedy heuristics, local search and ant 
colony optimisation (ACO). It was revealed that the ACO outperformed the others in obtaining better 
solution quality for smaller time limits. Gagné, et al. [5] developed the ACO as a new and powerful solution 
engine which contained effective transition rules for solving a multi-objective CSP. Solnon [18] introduced 
an ACO working under two different pheromone structures, each of which aimed at learning for good car 
sequences or learning for critical cars. Since the operations of these pheromone structures were 
complementary to each other, their combination could significantly improve the algorithm speed.   

Gavranović [19] developed the constructive greedy algorithm and VNS developed for the CSP with 
colours. Tabu search (TS) was then applied to improve the results initially obtained from the VNS. Cordeau, 
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et al. [20] developed an iterated TS heuristic which combined the classical TS with perturbation operators in 
order to avoid the local optima.  

Zinflou, et al. [21] introduced three new crossover operators using with a GA to solve the CSP, i.e. 
interest based crossover (IBX), uniform interest crossover (UIX) and non-conflict position crossover 
(NCPX). Zinflou and Gagné [22] proposed an algorithm, which is a hybridisation of a GA and an artificial 
immune system, namely GISMOO, to tackle the multi-objective CSP in a Pareto sense. The Pareto solutions 
obtained from GISMOO dominated those of the non-dominated sorting genetic algorithm (NSGA II) and 
Pareto memetic strategy for multiple-objective optimisations (PMSMO). Atiker et al. [23] proposed a heuristic 
to tackle the CSP under the scenario in which high priority ratio constraints are primary, and colour 
constraints are secondary. 
 
2.2. 2SAL Sequencing 
 
Prior to launching orders to the assembly line, the assembly sequence of parts and subassemblies must be 
determined. Bahubalendruni and Biswal [24] reviewed and discussed research articles on the assembly 
sequence generation published over the past four decades. Obviously, an appropriate assembly sequence 
results in minimal lead time and low cost of assembly [25]. 

The mixed-model assembly line sequencing problem has been one of the research topics that challenges 
researchers during the last decade. Obviously, most research was mainly conducted on one-sided straight-
shaped assembly lines. This environment is applicable to small-sized products, e.g. printed circuit board, 
television, etc. where each worker is comfortable to work effectively with a workpiece and its assembly 
components. Since the size of cars is too big to manipulate by a single worker, two-sided assembly lines where 
two workers perform their assigned tasks cooperatively in a workstation tend to be a more effective 
alternative for doing assembly works. 

Boysen et al. [26] give a detailed review of mixed-model sequencing algorithms and illustrated a number 
of potential performance measurements commonly used in literature, e.g. workload variation, part usage rate 
variation, amount of utility work, etc. In addition, most research in the early years attempted to optimise only 
a single objective such as the articles of Miltenburg, et al. [27] and Stiener and Yeomans [28].  

During the last decade, the trend of the research has moved towards multi-objective optimisation of 
mixed-model sequencing problems which much more reflects the decision maker’s point of view in practice. 
The challenging issue arises from several objectives to be optimised simultaneously are often conflict with 
one another; therefore, a compromised solution becomes implicitly acceptable. In addition, Pareto-based 
solution techniques are more appropriate than weighted sum techniques [29]. 

A new constraint occurred in the 2SAL, but not in the 1SAL, is sequence-dependent finish time of tasks. 
Since two workers have to work concurrently and cooperatively on the same workpiece in a mated station of 
2SAL, the finish time of tasks done by one worker could affect the start time of tasks to be performed by the 
other. As a result, to find the optimal operations of the CSP2SAL, the launching sequence of mixed-model 
cars and the cooperation of workers in the same mated station must be contemplated carefully. 

Since the CSP2SAL is NP-hard by nature, the evolutionary algorithm seems to be promising solution 
techniques. Several researchers employed this algorithm to solve the 2SAL sequencing problem including TS 
[30], Pareto stratum-niche cubicle genetic algorithm [31], SA [32], genetic algorithm [33], ant colony 
optimisation [34], memetic algorithm [35], multi-objective scatter search [36], coincidence algorithm [37], 
extended coincidence algorithm [7], etc. 
 

3. Problem Definition 
 

According to the proposal in the ROADEF’05 challenge on the CSP, the car production facility in 
industry consists of three main steps serially interconnected as the body fabrication shop, paint shop and 
assembly shop [2]. Car chassis, metal fabrication, bodywork and welding process are manufactured in the 
body fabrication shop. Various predefined colours are painted on the bodies of cars according to customer 
orders in the paint shop. In the assembly shop, engine, suspension parts, electrical parts, underbody parts as 
well as specific options, e.g. sunroof, alloy wheel, sports seat, satellite navigation, etc. are installed into the 
car.  

Gagné, et al. [5] mentioned that manufacturing flexibility in the body fabrication shop stemming from 
the widespread use of programmable robotic equipment resulting in its daily production schedule could be 
easily adjusted to fit with the requirements imposed by the two remaining shops. Consequently, the shops 
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which must be taken into account in optimising the CSP are limited to the paint shop and the assembly shop 
only [6].   

As mentioned earlier, the CSP should be considered as a combinatorial optimisation problem rather than 
a constraint satisfaction problem since in practice their constraints could be violated. When a constraint is 
violated, the number of occurrences in a particular type will be notified and accumulated. Cordeau, et al. [20] 

recommended that some types of violations happening in a certain production day 𝐽 were affected by the 

actual production in the previous day (𝐽 − 1) and the planned production in the next day (𝐽 + 1). As a result, 
these three consecutive days must be considered all together to effectively assess the constraint violations. 

Two constraints are normally emphasised in the CSP, i.e. ratio constraint (𝑅𝐶) and number of paint 

colour changes (𝑁𝐶𝐶). The 𝑅𝐶, a capacity related constraint, is the primitive constraint of the traditional 

CSP. The simplified version of this constraint is formalised by a ratio 𝑝 𝑞⁄  meaning that for each particular 

option at most 𝑝 cars could be installed with that option in any subsequence production segment of 𝑞 cars. 

The 𝑅𝐶 is a soft constraint meaning violations are feasible but with a cost. Ribeiro, et al. [16], Ribeiro, et al. 

[17] subdivided the 𝑅𝐶 into two categories, i.e. high and low priorities. The low priority 𝑅𝐶 has the value of 

the 𝑅𝐶 less than the high priority 𝑅𝐶. In fact, the option with high priority 𝑅𝐶 will impose heavy workload 
on the assembly line and demonstrating the sense of production difficulty.  

To count the number of 𝑅𝐶 violations, the sliding window method is normally used. This method counts 

all 𝑅𝐶 violations whenever found (Gottlieb et al. 2003). However, this method does not only double counting 

the 𝑅𝐶 violations, but also it could be biased by the violations occurring around the beginning and the end 
of the daily production sequence. To mitigate this issue, Fliedner and Boysen [37] suggested counting only 

the actual number of occurrences leading to the 𝑅𝐶 violations. An numerical example is demonstrated in 
Chutima and Olarnviwatchai [7]. 

Another constraint of the CSP recently introduced by the ROADEF challenge is the number of colour 

change (𝑁𝐶𝐶). This constraint occurred in the paint shop where various colours are painted on the bodies 
of cars. Since unproductive setups are inevitable when changing paint colours from one to another, cars 
should be painted with the same colour in a batch as many as possible. However, the maximum batch size 

(𝐶𝐵𝑆𝑚𝑎𝑥) is controlled by two events, i.e. number of cars continuously painted with the same colour before 
the paint gun agglutinates and before visual colour inspection becomes ineffective, depending on which one 

is less. Obviously, 𝐶𝐵𝑆𝑚𝑎𝑥  is a hard constraint; hence, any car sequence that violates the 𝐶𝐵𝑆𝑚𝑎𝑥  is 

unfeasible. To count the 𝑁𝐶𝐶 correctly, the colour of the last car produced in day 𝐽 − 1 must be compared 

with the first car of day 𝐽 to check if the colour change is occurred or not.   
Most literature published on the CSP always assumes that one-sided assembly lines (1SALs) are used in 

the assembly shop which is unrealistic in practice. The more pragmatic assumption is the utilisation of 2SALs. 
Recently, Chutima and Olarnviwatchai [7] introduced the new version of the CSP where the 2SAL was 

employed in the system namely the CSP2SAL. In their research, apart from the 𝑅𝐶 and 𝑁𝐶𝐶, the utility work 

(𝑈𝑇𝑊) arisen due to the employment of the 2SAL was also optimised. This research extends the previous 
work of Chutima and Olarnviwatchai [7] to include more pragmatic objectives related to the 2SAL and just-
in-time production environment called MaCSP2SAL. Feasible solutions of the MaCSP2SAL is a permutation 
of daily car production sequence in which all hard constraints are satisfied and the violations of the soft 
constraints are minimised.  

In this research, six objective functions normally used in automotive industry and literature are optimised 
simultaneously to assess the effectiveness of the car sequence in 2SAL including minimising number of colour 
changes, minimising utility work, minimising total idle time, minimising number of RC violations, minimising 
total production rate variation and minimising total parts usage variation. The detailed formulation of each 
objective is elaborated as follows. 
 

(a) Minimising number of colour changes (𝑁𝐶𝐶): In the paint shop, cars are consecutively painted with 
various colours. Setup is necessary when changing from one colour to another. As a result, consecutive 
painting with the same colour is an effective way to save the setup time and cost. However, the same 

colour painting batch size could not be greater than the predefined maximum number (𝐶𝐵𝑆𝑚𝑎𝑥) since 
the paint gun needs to be purged at a regular interval to reduce the quality problems on the painted 
surface. In addition, the paint colour is often changed during paint gun purging to control visual overload 
and substandard indistinguishable in the quality inspection process. The first objective can be formulated 
as follows [7]. 
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    𝑓1 = minimise 𝑁𝐶𝐶 = ∑ 𝛿𝐶𝑂𝐿𝑘,𝑘+1

𝑛𝑐−1
𝑘=0     (1) 

 
where 

 𝑘   position of the car sequence in day 𝐽, (𝑘 ∈ [1, 𝑛𝑐]) 
 𝑛𝑐  number of the cars to be produced in day 𝐽  

 𝐶𝑂𝐿𝑘  colour of the car located at the position 𝑘 

 𝛿𝐶𝑂𝐿𝑘,𝑘+1
 difference in colours of cars in positions 𝑘 and 𝑘 + 1, (𝛿𝐶𝑂𝐿𝑘,𝑘+1

= 1 if the colours of cars in 

positions 𝑘 and 𝑘 + 1 are different; and 0 otherwise) 
 

(b) Minimising utility work (𝑈𝑇𝑊): In 2SAL, the utility work represents the unfinished tasks leftover by 
regular workers due to the cycle time limitation. Utility workers have to help complete these unfinished 
utility works to avoid line stoppage and allow the worker in the next workstation to start his operation at 
the earliest start time. The pictorial explanation is in Fig. 1. The second objective can be formulated as 
follows [38].  

 

 𝑓2 = minimise 𝑈𝑇𝑊 = ∑ (∑ 𝑈𝑖,𝑛𝑚
+ 𝑍(𝑖+1),𝑛𝑚

𝑛𝑐
𝑖=1 /𝑠𝑐)

𝑁𝑀
𝑛𝑚=1    (2) 

 
subject to 

 𝑈𝑖,𝑛𝑚
= {

max
 

[0,
(𝑍𝑖,𝑛𝑚+𝑠𝑐 ∑ 𝑋𝑖,𝑚{𝑡2𝑛𝑚−1,𝑚+𝑌2𝑛𝑚−1,𝑚}𝑀

𝑚=1 −𝐿𝑛𝑚)

𝑠𝑐
]

+ max
 

[0,
(𝑍𝑖,𝑛𝑚+𝑠𝑐 ∑ 𝑋𝑖,𝑚{𝑡2𝑛𝑚,𝑚+𝑌2𝑛𝑚,𝑚}𝑀

𝑚=1 −𝐿𝑛𝑚)

𝑠𝑐
]

}   (3) 

 

𝑍(𝑖+1),𝑛𝑚
=             

max
 

{
max

 
[0, min

 
(𝑍𝑖,𝑛𝑚

+ 𝑠𝑐 ∑ 𝑋𝑖,𝑚{𝑡2𝑛𝑚−1,𝑚 + 𝑌2𝑛𝑚−1,𝑚}𝑀
𝑚=1 − 𝛾𝑠𝑐, 𝐿𝑛𝑚

− 𝛾𝑠𝑐)]

, max
 

[0, min
 

(𝑍𝑖,𝑛𝑚
+ 𝑠𝑐 ∑ 𝑋𝑖,𝑚{𝑡2𝑛𝑚,𝑚 + 𝑌2𝑛𝑚,𝑚}𝑀

𝑚=1 − 𝛾𝑠𝑐, 𝐿𝑛𝑚
− 𝛾𝑠𝑐)]

} (4) 

 
where 

 𝑛𝑚  sequential number for each mated station (𝑛𝑚 = 1, 2, …, 𝑁𝑀) 

 𝑛𝑐𝑣  number of cars in model 𝑣 ∈ 𝑉 to be produced in the current day 

 𝑛𝑐   total daily production order (𝑛𝑐 = ∑ 𝑛𝑐𝑣
𝑉
𝑣=1 ) 

 𝛾   rate of the product launch interval into the conveyer 

 𝑡𝑗,𝑣  total operation time for car model 𝑣 at station 𝑗 

 𝑌𝑗,𝑣  total unavoidable idle time caused by the sequence-dependent finish time of tasks for car 

model 𝑣 at station 𝑗 

 𝑠𝑐  conveyor speed 

 𝐶𝑇   cycle time of the line 

 𝐿𝑛𝑚
  fixed line length of the mated station 𝑛𝑚 (𝐿𝑛𝑚

= 𝑠𝑐 ∗ 𝐶𝑇) 

 𝑈𝑖,𝑛𝑚
 amount of utility work required for the 𝑖th product (𝑖 = 1 … 𝐼) in a sequence at the mated 

station 𝑛𝑚 

 𝑋𝑖,𝑣  existent of car model 𝑣 at the 𝑖th product sequence (𝑋𝑖,𝑣= 1, if the 𝑖th car in a sequence is 

model 𝑣; and 𝑋𝑖,𝑣= 0, otherwise) 

 𝑍𝑖,𝑛𝑚
 starting position of the work on the 𝑖th car in a sequence at the mated station 𝑛𝑚 
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Fig. 1. Pictorial description of utility work and idle time in 2SAL. 
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(c) Minimising total idle time (𝐼𝑇): In 2SAL, the duration which the worker has to wait before the next car 
entering the workstation is to be minimised in order to increase worker utilisation. Since two workers are 
needed in the mated stations of 2SAL, the total idle time of this kind is the sum of the idle time from 
each worker. The pictorial explanation is illustrated in Fig. 1. The third objective can be formulated as 
follows [39].  

 

 𝑓3 = minimise 𝐼𝑇 =
1

𝑣𝑐
∑ ∑ 𝑄𝑖,𝑛𝑚

𝑛𝑐
𝑖=1

𝑁𝑀
𝑛𝑚=1     (5) 

 

 𝑄(𝑖+1),𝑛𝑚
= {

max
 

[0, 𝛾𝑠𝑐 − (𝑍𝑖,𝑛𝑚
+ 𝑠𝑐 ∑ 𝑋𝑖,𝑚{𝑡2𝑛𝑚−1,𝑚 + 𝑌2𝑛𝑚−1,𝑚}𝑀

𝑚=1 )]

+ max
 

[0, 𝛾𝑠𝑐 − (𝑍𝑖,𝑛𝑚
+ 𝑠𝑐 ∑ 𝑋𝑖,𝑚{𝑡2𝑛𝑚,𝑚 + 𝑌2𝑛𝑚,𝑚}𝑀

𝑚=1 )]
}  (6) 

subject to 

 𝑠𝑐 ∑ 𝑋𝑖,𝑚{𝑡2𝑛𝑚−1,𝑚 + 𝑌2𝑛𝑚−1,𝑚}𝑀
𝑚=1 > 0 ∀𝑖∀𝑛𝑚     (7) 

 𝑠𝑐 ∑ 𝑋𝑖,𝑚{𝑡2𝑛𝑚,𝑚 + 𝑌2𝑛𝑚,𝑚}𝑀
𝑚=1 > 0 ∀𝑖∀𝑛𝑚      (8) 

 
where 

 𝐼𝑇   total idle time to wait for the next car entering the mated stations 

 𝑄𝑖,𝑛𝑚
  distance before the 𝑖th car sequence to enter the mated station 𝑛𝑚 

 
(d) Minimising a total number of RC violations (𝑇𝑁𝑅𝐶𝑉): In the assembly shop, the same standard body of 

cars could be installed with different options to satisfy the personalised demands of specific customers. 
For some difficult-to-install options, workers have a limited capacity to handle such heavy workload 
continuously before feeling tired. Therefore, these options have to distribute uniformly along the 
production sequence so that workers can reduce their fatigues by installing difficult options alternatively 

with those easy ones. The RC of the option 𝑜 ∈ 𝑂 is defined as 𝑝𝑜 𝑞𝑜⁄  meaning that for any segment 

with length 𝑞𝑜  of the car production sequence, at most 𝑝𝑜  cars requiring option 𝑜  to be produced. 

Obviously, for an easy option the ratio of 𝑝𝑜 𝑞𝑜⁄  is low. Because the subsequent segment of 𝑞𝑜 cars must 

be considered in the RC violation, the last 𝑞𝑜 − 1 cars produced in day 𝐽 − 1 and the first 𝑞𝑜 − 1 cars 

produced in day 𝐽 + 1 must be used in determining the RC violation in day 𝐽. Since the RC is a soft 
constraint, violations are possible but at a cost. The modified sliding window technique proposed by 
Fliedner and Boysen [16] is used in this research since it can count the actual positional occurrences of 
violations effectively. Besides revealing the number of violations correctly without double counting, this 
technique could reveal the maximum number of overloaded workstations also. The fourth objective can 
be formulated as follows (note: a calculation sample can be seen in [7]).  

 

 𝑓4 = minimise 𝑇𝑁𝑅𝐶𝑉 = ∑ {𝑁𝑃𝑉𝑜; 𝑖 𝜖 𝑑𝑎𝑦 𝐽}⟦⋃ 𝑃𝑉𝑜(𝑖, … , 𝑖 + 𝑞𝑜 − 1)𝑛𝑐
𝑖=−𝑞0+1 ⟧}𝑜∈𝑂  (9) 

 
where 

 ∪   union set operator 

 𝐽  current production day 

 𝑛𝑐  number of cars to be produced in day 𝐽  

 𝑃𝑉𝑜(𝑖, … , 𝑖 + 𝑞𝑜 − 1)  set of positions where violations occurred under a sliding window starting 

from position 𝑖 to 𝑖 + 𝑞𝑜 − 1 

 𝑁𝑃𝑉𝑜; 𝑖 𝜖 𝑑𝑎𝑦 𝐽}⟦   ⟧  number of positions only in day 𝐽 in which violations occurred for option 𝑜 

 

(e) Minimising total production rate variation (𝑃𝑅𝑉): In the assembly shop, the production rate variation is 
the variation in the rate at which different car models are sequentially assembled on the assembly line. If 
the production of any car model is uniformly distributed on the daily car production sequence, its 
production rate variation will be low, and vice versa. This objective is very important in the just-in-time 
production system since the mixed-model production is necessary in responding to customer demands 
for various car models. The fifth objective can be formulated as follows [36]. 
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 𝑓5 = minimise 𝑃𝑅𝑉 = ∑ ∑ |(∑
𝑋𝑙,𝑚

𝑖
𝑖
𝑙=1 ) −

𝑑𝑚

𝑛𝑐
|𝑀

𝑚=1
𝑛𝑐
𝑖=1    (8) 

 
where 

 𝑚  car models to be produced by the assembly line (𝑚 = 1, …, 𝑀) 

 𝑑𝑚  demand of the car model 𝑚 

 𝑛𝑐  number of cars to be produced in the current day 

 𝑋𝑙,𝑚  existent of car model 𝑚 at the 𝑙th product sequence (equal to 1 if car 𝑙th in the assembly 

sequence is of model 𝑚, and 0 otherwise)  
 

(f) Minimising total parts usage variation (𝑃𝑈𝑉): In the assembly shop, the parts usage variation directly 
affects the preparation of parts for each product model to be assembled in the assembly line. If parts 
usage variation is high or parts consumption is uneven, the production planning will become difficult 
and the possibility of parts shortage is high. The sixth objective can be formulated as follows [40].  

 

 𝑓6 = minimise 𝑃𝑈𝑉 = ∑ ∑ (
𝑖×𝑁𝑗

𝑛𝑐
− 𝑈𝑇𝑗,𝑖)

2
𝛽
𝑗=1

𝑛𝑐
𝑖=1    (9) 

 

 𝑈𝑇𝑗,𝑖 = ∑ ((∑ 𝑋𝑙,𝑚
𝑖
𝑙=1 ) × 𝑏𝑚,𝑗)𝑀

𝑚=1     (10) 

 

 𝑁𝑗 = ∑ (𝑑𝑚 × 𝑏𝑚,𝑗)𝑀
𝑚=1       (11) 

 
where 

 𝛽  number of parts variety 

 𝑁𝑗 total quantity of part 𝑗 required by all cars 

 𝑑𝑚 demand of car model 𝑚 

 𝑈𝑇𝑗,𝑖 total number of part 𝑗 being assembled from the first product sequence until 𝑖th product 

sequence (𝑖 = 1, … , 𝑛𝑐; 𝑗 = 1,2, … , 𝛽) 

 𝑏𝑚,𝑗 number of units of part 𝑗 required per unit of car model 𝑚 (equal to 1 if car model 𝑚 uses 

part 𝑗; 0 otherwise)   
 

4. Proposed Solution Approach 
 
4.1. AMOEA/D-DE 
 
The CSP has long been considered as a multi-objective optimization problem (MOP) in practice since various 
conflicting objectives may need to be achieved simultaneously by car manufacturers. Previously, due to the 
absence of advanced metaheuristic theories as well as computer hardware and software, the multi-objective 
CSP had to be solved as a single objective optimisation by defining an aggregate utility function which takes 
a weighted sum of various objectives or alternatively solving these multi-objectives in a lexicographic order 
based on their preferential priorities. However, during the past two decades, the concepts of evolutionary 
algorithms and Pareto optimality have become more acceptable among researchers resulting in 
simultaneously optimising objectives used in the CSP under more realistic production environment is 
realisable [7].  
According to Coello and Zacatenco [41], the formal formulation of the MOP is as follows. 
 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝐹(𝒙) = (𝑓1(𝒙), 𝑓2(𝒙), … , 𝑓𝑚(𝒙)) 𝑇 (12) 

 subject to 𝒙 𝜖 𝑅𝑛  
 

where 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 is the vector of decision variables located in the feasible landscape of 𝑅𝑛, and 

𝑓𝑖(𝒙) is the value of the 𝑖th objective function (𝑖 = 1,2, … , 𝑚) in the objective space of 𝑅𝑚. Due to the 
objectives of the MOP are often conflicted in nature, trade-off decisions among them are always unavoidable 
when attempting to optimise them all together. As a result, the resulting solutions will be represented as a set 
of efficient trade-off solutions rather than a single one. 
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A solution 𝒙 is said to dominate a solution 𝒚 (mathematically written as 𝒙 ≺ 𝒚) if 𝒙 is not worse than 𝒚 

in any objective and at least in one objective 𝒙 is strictly better than 𝒚. However, if 𝒙 is better than 𝒚 in one 

or more objectives and 𝒚 is better than 𝒙 in one or others, these two solutions are non-dominated (indifferent) 

to each other. Moreover, we said that 𝒙 is a Pareto optimal solution (POS) or an efficient solution if 𝒙 is non-
dominated over the set of solutions under consideration. The vector of POSs plotted in the objective space 
forms the Pareto front (PF). The ideal PF should contain a reasonable number of POSs, all of which are 
diverse and spread uniformly throughout the whole area of the objective space. 

One of the effective approaches to tackle the MOP is the application of multi-objective evolutionary 
algorithms (MOEAs) since the shape or discontinuity of PFs affects their performance very little. Most 
conventional MOEAs employ POSs to guide their search trajectories to improve the fitness of the solutions. 
However, this approach may be ineffective particularly in case of more than three objectives (i.e. many 
objectives) are dealt with simultaneously. When the number of the objectives escalates, the number of POSs 
will increase accordingly due to the lessening of the Pareto domination strength among the obtained solutions 
[42].  

A novel MOEA to solve many-objective optimisation problems (MaOPs) was proposed by Zhang and 
Li [58] namely a multi-objective evolutionary algorithm based on decomposition (MOEA/D). The algorithm 
was found to perform very well on a number of MOPs. The MOEA/D decomposes the original MaOP into 
a number of subproblems in which different single objectives formulated by the scalar aggregations of 
uniformly distributed weight vectors are assigned to each of them. Unlike Pareto-based MOEAs, these 
diverse weight vectors are the key parameter used in projecting the search direction of the algorithm towards 
the optimal solution. In each generation, these subproblems are collaboratively optimised simultaneously. 
After the evolutionary process completes, the optimal solution to each of these subproblems is brought 
together to form the PF of the original MaOP.   

To generate weight vectors for subproblems in the MOEA/D, the simplex-lattice design, a conventional 

decomposition method of the mixture experimental design, is often used. Let 𝑚 be the number of objectives 

to be simultaneously optimised, 
𝑖
 = (1

𝑖 , … ,𝑚
𝑖 )𝑇 be a weight vector of the 𝑖th subproblem (where 𝑗

𝑖
 ≥ 0 

for all 𝑗 = 1, …, 𝑚; and ∑ 𝑗
𝑖𝑚

𝑗=1  = 1). The number of subproblems (i.e. population size 𝑁𝑝) in the (𝑚, 𝐻) 

simplex-lattice design in which each objective takes 𝐻+1 equally distanced between 0 and 1 is 𝐶𝐻+𝑚−1
𝑚−1 .  

The MOEA/D utilises the information from each subproblem and its neighbourhoods to improve the 

fitness of solutions. Let 𝐵𝑖(𝑁𝑛)  be a set of neighbourhood sized 𝑁𝑛  of the 𝑖 th subproblem. The 

subproblems {𝑖1, 𝑖2, … , 𝑖𝑁𝑛
} belong to the neighbourhood of the subproblem 𝑖 if the Euclidean distances 

between their weight vectors 
𝑖1 ,𝑖2 , … ,𝑖𝑁𝑛  and the weight vector 

𝑖
 are shortest comparing with the rest. 

Since the values of 
𝑖
 of the subproblem  𝑖 and their neighbourhoods are not much different and closely 

related, the solutions within this area tend to have quite similar characteristics and hence they are used as a 
mechanism to guide searching direction towards the optimal solution.  

Although various approach could be used to transform many objectives in the subproblems of the 
original MOP into scalar single-objective optimization problems, the Tchebycheff approach seems to be 
more effective because of its computational simplicity and effectiveness in handling non-convex PF [43]. The 

Tchebycheff function 𝑔(𝑥) is expressed as follows.  
 

 min 𝑔(𝑥| 𝑖, 𝑧∗) = 𝑚𝑎𝑥1≤𝑗≤𝑚{𝑗
𝑖|𝑓𝑗(𝑥) − 𝑧𝑗

∗|} (13) 

 

where 𝑥 is the decision variable, Ω is the feasible region of the decision variable 𝑥, 𝑓𝑗(𝑥) is the real value of 

the 𝑗th objective, 𝑧∗ = (𝑧1
∗, … , 𝑧𝑚

∗ )𝑇 is a utopian point, and 𝑧𝑗
∗= 𝑚𝑖𝑛{𝑓𝑗(𝑥)|𝑥 ∈ Ω} is the reference point 

(i.e. so-far best value of the 𝑗th objective). The function {𝑗
𝑖|𝑓𝑗(𝑥) − 𝑧𝑗

∗|} is the weighted absolute deviation 

between the value of the 𝑗th objective and its reference point. The Tchebycheff function attempts to reduce 
the highest weighted absolute deviation of the subproblem as much as possible.  

If the scales of the objectives are different, the normalisation to the same scale ranging between [0, 1] to 
provide a uniform platform of the solution space is necessary. The formulation of the normalised objective 
is given as follows. 
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 𝑓�̅� =
𝑓𝑗−𝑧𝑗

∗

𝑧𝑛𝑎𝑑−𝑧𝑗
∗  (14) 

 

where 𝑓�̅� is the normalised value of the 𝑗th objective, and 𝑧𝑛𝑎𝑑 = 𝑚𝑎𝑥{𝑓𝑗(𝑥)|𝑥 ∈  𝑃𝑂𝑆}  is the nadir point 

in the objective space.  
In order to create new tentative solutions (offspring), the original version of the MOEA/D uses the 

genetic operator, i.e. one point crossover, which is normally used in the GA. However, the GA was 
outperformed by the differential evolution (DE) algorithm in terms of global search ability [44, 45]. Li and 
Zhang [46], Li and Zhang [47] proposed a multi-objective differential evolution based decomposition 
(MODE/D) in which the genetic operator was replaced by the differential operators and revealed that the 
MODE/D performed better than several other MOEAs on many test problems. 

The DE, a subset of evolutionary algorithms, was first introduced by Storn [48] for global optimisation 
problems over continuous-valued landscapes. The DE has been recognised as a simple yet effective algorithm 
for successfully implemented in many engineering practices, e.g. power generation, engineering design, etc. 
[49]. The DE uses a real number to represent each variable in the solution. To produce tentative offspring, 
two of DE’s operators are applied to solutions in the current generation in the order of mutation first and 
then crossover. The mutation operator creates a trial vector for each individual parent by mutating each 
variable in a target vector with a weighted differential of different vectors. After that, the crossover operator 
manipulates discrete recombination between the trial vector and the parent vector to form a new offspring. 
The fitness of the offspring is compared with its parent to determine which one will be survived in the next 
generation. 

Various DE strategies, in which the main differences are on mutation and crossover operators, have been 

developed in the literature [50]. To articulate their variations, a general notation as DE/𝑥/𝑦/𝑧 is normally 

adopted; where 𝑥 is the target vector selection method, 𝑦 is the number of difference vectors used in the 

mutation, and 𝑧  is the crossover method. The MODE/D uses the DE/rand/1/bin strategy to create 
offspring which works as follows. Under the conventional MOEA/D platform, for each individual 

subproblem 𝑖 th (i.e. parent vector 𝒙𝑖 ), three solutions are selected from the population (i.e. the 

neighbourhood of the subproblem, 𝐵𝑖(𝑁𝑛)) at random. One of them (𝒙𝑟1
) acts as a target vector (𝑥 = rand) 

and the remaining twos (𝒙𝑟2
 and 𝒙𝑟3

) are used to find the differential variation (𝑦 = 1). The mutant vector 

𝒗𝑖 is computed by perturbing the target vector with the weighted differential as follows. 
 

 𝒗𝑖 = 𝒙𝑟1
+ 𝐹(𝒙𝑟2

− 𝒙𝑟3
) (15) 

 
where 𝒗𝑖 is the mutant vector of the parent vector 𝒙𝑖 (𝑖 ≠ 𝑟1 ≠ 𝑟2 ≠ 𝑟3) and 𝐹 ∈ (0, ∞) is the scale factor. 

Once the mutation is finished, the crossover operator creates the trial vector 𝒙𝑖
′ from the recombination of 

the mutant vector 𝒗𝑖 and its target vector (parent) 𝒙𝑖. For the binomial crossover (𝑧 = bin) which is normally 

used in literature, the crossover points are randomly selected from the set of feasible crossover points 𝑗 ∈
[1, 𝑛𝑥] as follows. 
 

 𝑥𝑖,𝑗
′ = {

𝑣𝑖,𝑗,     if 𝑟𝑎𝑛𝑑𝑜𝑚[0,1] < 𝐶𝑅 or 𝑗 =  𝑗𝑟𝑎𝑛𝑑𝑜𝑚

𝑥𝑖,𝑗,     otherwise
 (16) 

 

where 𝒙𝑖
′ is the trial vector, 𝑥𝑖,𝑗

′ , 𝑣𝑖,𝑗 and 𝑥𝑖,𝑗 are the 𝑗thelement of the vectors  𝒙𝑖
′ , 𝒗𝑖 and 𝒙𝑖, respectively, 

𝑛𝑥 is the number of elements in the vector, and 𝐶𝑅 is the crossover probability. Obviously, the higher the 

value of 𝐶𝑅, the more element of the mutant vector will be included in the offspring than the parent (base 
vector), and vice versa. To ensure that at least one element of the trial vector is distinct from its parent, the 

crossover point 𝑗𝑟𝑎𝑛𝑑𝑜𝑚  is randomly selected and assigning the value of 𝑣𝑖,𝑗𝑟𝑎𝑛𝑑𝑜𝑚
 to 𝑥𝑖,𝑗𝑟𝑎𝑛𝑑𝑜𝑚

′ . The 

polynomial mutation is applied to the initial mutation vector to become the (final) mutation vector 𝒙𝑖
′′ in the 

following way [49]. 
 

 𝑥𝑖,𝑗
′′ = {

𝑥𝑖,𝑗
′ + 𝜎𝑛(𝑥𝑖,𝑗

′𝑈𝑝
− 𝑥𝑖,𝑗

′𝐿𝑤)      with probability 𝑝𝑚

𝑥𝑖,𝑗
′                                           with probability 1 − 𝑝𝑚

 (17) 
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 𝜎𝑛 = {
(2 × 𝑟𝑎𝑛𝑑𝜎) 

1

𝜂+1 − 1                if 𝑟𝑎𝑛𝑑𝜎 < 0.5

1 − [2(1 − 𝑟𝑎𝑛𝑑𝜎)]
1

𝜂+1           otherwise

 (18) 

 
where 

 𝑥𝑖,𝑗
′𝑈𝑝

 the lower bound of the 𝑗thelement of the vectors 𝒙𝑖
′ 

 𝑥𝑖,𝑗
′𝐿𝑤 the lower bound of the 𝑗thelement of the vectors 𝒙𝑖

′ 

 𝑟𝑎𝑛𝑑𝜎 random number sampling from a uniform distribution [0, 1] 

 𝑝𝑚  mutation probability 

 𝜂  distribution index of polynomial mutation 
 

Once a trial vector is created, its fitness is compared with its base vector’s fitness and the one with better 
fitness will be survived as an offspring of the DE operations. 

Apart from the DE strategy, the behaviour of the algorithm could be controlled by other parameters 

including population size, mutation factor 𝐹 and crossover probability 𝐶𝑅. If the population size is big, a 
large number of individuals will participate in the mutation resulting in a greater chance to create a better 

offspring. The mutation factor 𝐹 affects the searching ability of the DE in generating potential trail vectors. 

The values of 𝐹 directly affect the search landscape of the DE, i.e. local search for small 𝐹 values and global 

search for large 𝐹 values. Moreover, the crossover probability 𝐶𝑅 controls the proportion of elements in the 
offspring to be inherited from the trial vector or the parent. The offspring is more resemble to the trial vector 

than the parent if the values of 𝐶𝑅 is high, and vice versa. 
Conventionally, the DE strategy, as well as the values of the control parameters, are determined 

beforehand and they are kept unchanged during the course of the evolutionary search. As a result, the same 
searching pattern is repeatedly applied regardless of current fitness landscape causing a high risk of being 
trapped in local optima. In fact, the processes to obtain an appropriate DE strategy and the best values for 
individual control parameters are laborious. Although prior knowledge from previous research (if any) may 
be a good starting point for finding appropriate control parameter settings, a trial-and-error investigation 
which requires tedious experimental trials is necessary for the tuning process since these control parameters 
are mostly problem dependent. Moreover, the DE strategies and the values of the corresponding control 
parameters that make the algorithm perform best in one stage of the evolutionary search may not be preferred 
in another stage [51]. This shortcoming could be overcome by embedding an adaptive mechanism in the 
main structure of the algorithm.  

Zhang and Sanderson [52] categorised parameter control mechanisms into three classes, i.e. deterministic, 
adaptive and self-adaptive. While the adaptive and self-adaptive parameter controls take feedback information 
from the evolutionary process to dynamically update the control parameters, the deterministic parameter 
control simply uses some deterministic rules to adjust the control parameters. The adaptive and self-adaptive 
parameter controls differ in that the latter uses a method of the evolution of evolution through mutation and 
crossover in the self-adaptation of control parameters. If the adaptive or self-adaptive parameter control is 
well planned, the robustness of the algorithm could be strengthened. Besides no tiresome trial-and-error trail 
is needed, the convergence rate of the algorithm could be improved when allowing the values of its control 
parameters to be dynamically updated to suit various search characteristics at different stages of the 
evolutionary process.  

The DEs with adaptive or self-adaptive mechanism showed faster and more reliable convergence than 
those without [53, 54]. Among them, the randomisation-adaptation based DE usually outperforms the others 
[55]. Specifically, the randomisation-adaptation based DE uses some forms of probability distribution 
function, whose probability is derived from the successful offspring generation rate, to randomly provide 

various appropriate values of the control parameters, i.e. 𝐹  and 𝐶𝑅 . In this research, the concept of 
randomisation-adaptation based DE is adopted under the framework of MODE/D, namely AMOEA/D-
DE, to solve the MaCSP.   

The AMOEA-DE is an adaptive algorithm in which the algorithm could learn and utilise the feedback 
information acquired during the evolutionary search to dynamically adjust the control parameters without 
user’s intervention. The adaptive mechanism of AMOEA/D-DE consists of two components, i.e. (1) 
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mutation strategy adaptation, and (2) control parameter adaptation. The detail of each mechanism is explained 
as follows. 

Mutation strategy adaptation: AMOEA/D-DE adapts the concept of simultaneous implementation of 

multi-mutation strategies from SaDE [53]. Three mutation strategies (𝑠1, 𝑠2 and 𝑠3) are in the candidate 
pool to allow the algorithm to generate a variety of search patterns with respect to the current requirement 

of the fitness landscape. As a result, at generation 𝑔, a trial vector 𝒗𝑖,𝑔 can be generated by one of these 

strategies. 
 

 𝑠1: DE/rand/1: 𝒗𝑖,𝑔 = 𝒙𝑟1,𝑔 + 𝐹(𝒙𝑟2,𝑔 − 𝒙𝑟3,𝑔) (19) 

 𝑠2: DE/rbest/1: 𝒗𝑖,𝑔 = 𝒓best𝑖,𝑔 + 𝐹(𝒙𝑟1,𝑔 − 𝒙𝑟2,𝑔) (20) 

 𝑠3: DE/rand-to-rbest/1: 𝒗𝑖,𝑔 = 𝒙𝑟1,𝑔 + 𝛾(𝒓best𝑖,𝑔 −  𝒙𝑟1,𝑔) + 𝐹(𝒙𝑟2,𝑔 − 𝒙𝑟3,𝑔) (21) 

 
These mutation strategies are chosen in this research since they are simple to implement, widely used in 

DE literature, and reported to perform well on diverse problems. The mutation strategy DE/rand/1 is quite 
robust in generating diverse solutions but in contrast, its convergence rate is quite slow since it searches 
around a relatively small landscape without bias towards any particular direction. Gämperle et al. [56] 
indicated that the utilisation of the information from the best solution in developing a trial vector, e.g. 
DE/best/1, could be beneficial in fast convergence by focusing the search in the vicinity of the best solution. 
However, this strategy may cause premature convergence from reduced population diversity. To alleviate the 
weak point of fast but less reliable convergence, the mutation strategy DE/rand-to-best/1 which is the 
blending between DE/rand/1 and DE/best/1 is developed so that the trial vector could gain mutual benefits 
from both mutation strategies by searching around a wider landscape and biasing its searches towards 
potential optimum directions. 

Under the base structure of MOEA/D, the vector located at a particular position in the neighbourhood 

of subproblem 𝑖 currently being the best-so-far solution that subproblem 𝑖 has ever found till generation 𝑔 

could be replaced by another solution during the evolutionary process of generation 𝑔 . As a result, in 

generation 𝑔+1, the information on the real best solution of subproblem 𝑖 will be lost if such replacement 

occurs in generation 𝑔  especially with a poorer solution. Therefore, the information of the best-so-far 

solution associated with subproblem 𝑖 must be constantly updated and kept throughout the evolutionary 

process. Moreover, in order to find the real best (𝒓best) of subproblem 𝑖 to be used in Eq. (18) and (19), its 
best-so-far solution must also be taken into account along with the solutions in the neighbourhood in the 

competition arena. Where 𝒓best = (𝑟best1, 𝑟best2, … , 𝑟best𝑛𝑥
)𝑇 

The mutation strategy adaptation of the AMOEA/D-DE is modified from Qin and Suganthan [50] to 
suit the context of MaCSP. Initially, the selection probability of each strategy is set to be equal (1/3). After 
completing the evolutionary process in each generation, the number of trial vectors successfully and 
unsuccessfully surviving in the next generation by each mutation strategy is recorded. In addition, the number 
of survival trial vectors becoming new non-dominated solutions is also counted. This information is used to 
update the probabilities of strategy selection in the next generation as follows. 
 

 𝑝𝑠,𝑔+1 = 𝑝𝑚𝑖𝑛 + (1 − 𝑆 × 𝑝𝑚𝑖𝑛) ∙ [(1 − 𝛼)𝑝𝑠,𝑔 + 𝛼 ∙ (
𝑆𝑢𝑐𝑠,𝑔

∑ 𝑆𝑢𝑐𝑠,𝑔
𝑆
𝑠=1

)] (22) 

 

 𝑆𝑢𝑐𝑠,𝑔 =
𝑛𝑠𝑠,𝑔

𝑛𝑠𝑠,𝑔+𝑛𝑓𝑠,𝑔
 (23) 

 

 𝑛𝑠𝑠,𝑔 = ∑ ∑ 𝐷𝑆𝑅𝑖,𝑗,𝑔
𝑠𝑁𝑛

𝑗=1

𝑁𝑝

𝑖=1
 (24) 

 

 𝑛𝑓𝑠,𝑔 = ∑ ∑ (1 − 𝑆𝑅𝑖,𝑗,𝑔
𝑠 )

𝑁𝑛
𝑗=1

𝑁𝑝

𝑖=1
 (25) 

 
where 

 𝑠  selectable strategy, 𝑠 ∈ {𝑠1, 𝑠2, 𝑠3}   

 𝑆  total number of selectable strategy (𝑆 = 3 in this research) 

 𝛼  scaling factor based on the proportion of offspring vectors successfully surviving (0≤ 𝛼 ≤1) 
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 𝑁𝑝  population size 

 𝑁𝑛   neighborhood size 

 𝑝𝑠,𝑔  probability of selecting strategy 𝑠 in generation 𝑔 

 𝑝𝑚𝑖𝑛 minimum probability of selecting any strategy (𝑝𝑚𝑖𝑛 = 0.05 in this research) 

 𝑆𝑢𝑐𝑠,𝑔 proportion of strategy 𝑠 successfully creating survival offspring vectors in generation 𝑔 

 𝑛𝑠𝑠,𝑔 number of strategy 𝑠 successfully creating survival offspring vectors in generation 𝑔 

 𝑛𝑓𝑠,𝑔 number of strategy 𝑠 unsuccessfully creating survival offspring vectors in generation 𝑔 

 𝑆𝑅𝑖,𝑗,𝑔
𝑠  number of strategy 𝑠 successfully creating offspring vector that are better than the parent 

vector and its neighboring solutions of subproblem 𝑖 (𝑆𝑅𝑖,𝑗,𝑔
𝑠  = 1, if the offspring vector 𝒙𝑖

′′ 

is better than its parent vector 𝒙𝑖 and the other neighboring vectors 𝒙𝑗 of subproblem 𝑖 in 

generation 𝑔; 0, otherwise) 

 𝐷𝑆𝑅𝑖,𝑗,𝑔
𝑠  number of strategy 𝑠 successfully creating offspring vector that are better than the parent 

vector and its neighbouring solutions of subproblem 𝑖, and the offspring vector becoming a 

new non-dominated solution (𝑆𝑅𝑖,𝑗,𝑔
𝑠  = 1, if the offspring vector 𝒙𝑖

′′ is better than its parent 

vector 𝒙𝑖 and the other neighboring vectors 𝒙𝑗 of subproblem 𝑖, and the offspring vector 

becoming a new non-dominated solution in generation 𝑔; 0, otherwise) 
 
The detailed numerical example of MOEA/D-DE to solve MaCSP2SAL is given in [57]. 
 

Control parameter adaptation: The control parameters used in the DE could affect the convergence rate and 
diversity exploration performances significantly. As mentioned earlier, the values of the control parameters 
should not be fixed but allowed to vary based on the progress step and direction of the current search 
requirement. The first DE control parameter the value of which is adjusted during the evolutionary process 

is the mutation factor 𝐹 which is a key parameter used for generating mutant vectors. The values of 𝐹 have 

a direct impact to the exploitation and exploitation performances of the algorithm. A relatively small 𝐹 
renders fast convergence rate but may lead to premature convergence.  

The concept to adjust 𝐹 in this research is adapted from Zhang and Sanderson [52]. At each generation, 

the mutation factor of each subproblem 𝑖 is independently updated based on a Cauchy distribution depending 
on the number of successful offspring creations in the previous generation. The Cauchy distribution is used 

because it could diversify 𝐹  to avoid premature convergence especially in greedy mutation strategies as 
DE/rbest/1 and DE/rand-to-rbest/1. The formulation is as follows.  
 

 𝐹𝑖,𝑔+1
𝑠 = {

Cauchy(𝜇𝐹,𝑖,𝑡+1
𝑠 , 0.1),       if 𝑟𝑎𝑛𝑑1 < 𝜏𝑖,𝑔

𝑠

𝐹𝑖,𝑔
𝑠 ,                                   otherwise

 (26) 

 

 𝜇𝐹,𝑖,𝑔+1
𝑠 = {

(1 − 𝐿𝑅) ∙ 𝜇𝐹,𝑖,𝑔
𝑠 + 𝐿𝑅 ∙ 𝐹𝑖,𝑔

𝑠        if ∑ 𝐷𝑆𝑅𝑖,𝑗,𝑔
𝑠𝑁𝑝

𝑗=1
> 0

𝜇𝐹,𝑖,𝑔
𝑠                                                 otherwise

 (27) 

 

 𝜏𝑖,𝑔
𝑠 = 1 − [(1 − 𝛽) ∙

∑ 𝐴𝑆𝑅𝑖,𝑗,𝑘
𝑠𝑔

𝑘=1

∑ 𝑋𝑖,𝑘
𝑠𝑔

𝑘=1

] − [𝛽 ∙
∑ ∑ 𝐴𝑆𝑅𝑖,𝑗,𝑘

𝑠𝑁𝑝
𝑗=1

𝑔
𝑘=1

𝑁𝑅 ∑ 𝑋𝑖,𝑘
𝑠𝑔

𝑘=1

] (28) 

 

 𝐴𝑆𝑅𝑖,𝑗,𝑔
𝑠 =

1

2
(𝑆𝑅𝑖,𝑗,𝑔

𝑠 + 𝐷𝑆𝑅𝑖,𝑗,𝑔
𝑠 ) (29) 

 
where 

 𝐹𝑖,𝑔
𝑠   mutation factor of strategy 𝑠 in subproblem 𝑖 in generation 𝑔 

 𝜇𝐹,𝑖,𝑔
𝑠  average mutation factor of strategy 𝑠 in subproblem 𝑖 in generation 𝑔 

 𝜏𝑖,𝑔
𝑠   ratio of unsuccessfully creating offspring vector that are better than the parent vector from 

using strategy 𝑠 in subproblem 𝑖 generation 𝑔 

 𝐿𝑅  learning rate 

 𝐴𝑆𝑅𝑖,𝑗,𝑘
𝑠  average of 𝑆𝑅𝑖,𝑗,𝑔

𝑠  and 𝐷𝑆𝑅𝑖,𝑗,𝑔
𝑠   



DOI:10.4186/ej.2019.23.4.121 

ENGINEERING JOURNAL Volume 23 Issue 4, ISSN 0125-8281 (http://www.engj.org/) 135 

 𝛽 scaling factor for weighting the successfully creating offspring at the subproblem 𝑖 and the 

successfully creating offspring in the neighborhood of subproblem 𝑖, 0≤ 𝛽 ≤1 

 𝑋𝑖,𝑔
𝑠  binary number, 𝑋𝑖,𝑔

𝑠 = 1 if strategy 𝑠 is used in subproblem 𝑖 in generation 𝑔, 0 otherwise 

 𝑁𝑅  maximum number of successfully creating offspring vector 

 𝑟𝑎𝑛𝑑1 random number sampling from a uniform distribution [0, 1] 
 

The crossover probability 𝐶𝑅 is another DE parameter that affects the performance of the algorithm. 𝐶𝑅 
approximates the number of elements from the mutant vector will be inherited to the trial vector. If the value 

of 𝐶𝑅 is high, the trial vector will be more closely similar to the mutant vector than the base vector crating 

more solution diversity. Lin, et al. [58] suggested that the values of 𝐶𝑅 should be set at high during the 
beginning phase of the evolutionary search (exploration) and continuously decrease to a low value during the 

termination phase (exploitation). The regression equation was proposed to find appropriate values of 𝐶𝑅. 

The value of 𝐶𝑅 is subject to adjustment in each generation which can be formalised as follows.   
 

 𝐶𝑅𝑖,𝑔+1
𝑠 = {

0.55 + [
1

𝜋
× arctan (

1−𝑁𝐴𝑖,𝑔
𝑠 𝑅𝐺⁄ −0.8

0.1
)] ,       if 𝑟𝑎𝑛𝑑2 < 𝜏𝑖,𝑔

𝑠

𝐶𝑅𝑖,𝑔
𝑠 ,                                                            otherwise

 (30) 

 

 𝑁𝐴𝑖,𝑔
𝑠 = ∑ 𝑛𝑎𝑖,𝑘

𝑠𝑔
𝑘=1  (31) 

 
where 

 𝐶𝑅𝑖,𝑔
𝑠  crossover probability of strategy 𝑠 in subproblem 𝑖 in generation 𝑔  

 𝑁𝐴𝑖,𝑔
𝑠  cumulative number of crossover probability adjustments by strategy 𝑠 in subproblem 𝑖 until 

generation 𝑔 

 𝑛𝑎𝑖,𝑘
𝑠  binary number, 𝑛𝑎𝑖,𝑔

𝑠 = 1 if crossover probability of strategy 𝑠 is adjusted in subproblem 𝑖 

in generation 𝑘; and 0 otherwise 

 𝑅𝐺  remaining number of generations yet to be run 

 𝑟𝑎𝑛𝑑2 random number sampling from a uniform distribution [0, 1] 
 

The last parameter to be adjustable in this research is the greediness scale of the base vector 𝛾 which is used 

in the DE/rand-to-𝑟best/1 strategy (𝑠3). This research applies the method to adjust 𝛾 similar to Brest, et al. 

[55] by altering 𝛾 when 𝑟𝑎𝑛𝑑3 is less than the probability of unsuccessfully creating a new offspring vector 
that is better than the base vector so as to generate more diverse trial vectors. The adjustment is carried out 
in every generation using the uniform distribution. The formulation is as follows.   
 

 𝛾𝑖,𝑔+1
𝑠3 = {

𝑟𝑎𝑛𝑑4,           if 𝑟𝑎𝑛𝑑3 < 𝜏𝑖,𝑔
𝑠3

𝛾𝑖,𝑔
𝑠3 ,                otherwise

 (32) 

where 

 𝛾𝑖,𝑔
𝑠3   value of 𝛾 used by mutation strategy 𝑠3 in subproblem 𝑖 in generation 𝑔 

 𝑟𝑎𝑛𝑑3 random number sampling from a uniform distribution [0, 1] 

 𝑟𝑎𝑛𝑑4 random number sampling from a uniform distribution [0, 1] 

 
In this research, although the population size could be an adjustable parameter, it is assumed to be properly 
tuned in advance and fixed throughout the evolutionary process. Pseudo code for the AMOEA/D-DE is 
presented as follows. 
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---------------------------------------------- 
      Pseudo code of AMOEA/D-DE 
---------------------------------------------- 
 
1: /* Initialisation 

2: Generate 𝑁𝑝 weight vectors 𝜆𝑖 = (𝜆1
𝑖 , 𝜆2

𝑖 , … , 𝜆𝑚
𝑖 )

𝑇
, 𝑖 = 1, … , 𝑁𝑝 

3: For 𝑖 = 1, … , 𝑁𝑝 , define the set of indexes 𝐵𝑖(𝑁𝑛) = {𝑖1, … , 𝑖𝑁𝑛
}  where {𝜆𝑖1 , … , 𝜆𝑖𝑁𝑛 }  are the 𝑁𝑛 

closest weight vectors to 𝜆𝑖 (by the Euclidean distance) 

4: Generate an initial population 𝑃0 = {𝒙1, … , 𝒙𝑁𝑝
}, 𝒙𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑛𝑥

)
𝑇

 

5: Evaluate each individual in the initial population 𝑃0 and associate 𝒙𝑖 with 𝜆𝑖 

6: For 𝑖 = 1, … , 𝑁𝑝, set 𝑟best𝑖 = 𝒙𝑖 

7: Initialize 𝑧∗ = (𝑧1
∗, … , 𝑧𝑚

∗ ) by setting 𝑧𝑘
∗ = min

1≤𝑖≤𝑁𝑝

{𝑓𝑘(𝒙𝑖)}, 𝑘 = 1,2, … , 𝑚 

8: Set 𝑔 = 1 

9: For all strategies 𝑠 = 1, … , 𝑆, set 𝑝𝑠,𝑔 = 1 𝑆⁄  

10: For all  𝑆𝑅𝑖,𝑗,𝑔
𝑠  and 𝐷𝑆𝑅𝑖,𝑗,𝑔

𝑠  are set zero 

11:  
12: /* Main computation loop 
13: repeat  

14:     for each parent vector 𝒙𝑖, 𝑖 = 1, … , 𝑁𝑝 do 

15:         Select strategy 𝑠 from the pool according to 𝑝𝑠,𝑔 

16:  
17:         /* Parameter adaptation 

18:         if 𝑟𝑎𝑛𝑑1 < 𝜏𝑖,𝑔−1
𝑠  then //Adaptation of 𝐹 (𝑟𝑎𝑛𝑑 in 𝑈[0,1]) 

19:             Generate 𝐹𝑖,𝑔
𝑠 = Cauchy(𝜇𝐹,𝑖,𝑔+1

𝑠 , 0.1) 

20:         else 

21:             𝐹𝑖,𝑔
𝑠 = 𝐹𝑖,𝑔−1

𝑠  

22:         end if 

23:         if 𝑟𝑎𝑛𝑑2 < 𝜏𝑖,𝑔−1
𝑠  then //Adaptation of 𝐶𝑅 

24:             Calculate 𝐶𝑅𝑖,𝑔
𝑠 = 0.55 + [

1

𝜋
× arctan (

1−𝑁𝐴𝑖,𝑔
𝑠 𝑅𝐺⁄ −0.8

0.1
)] 

25:         else 

26:             𝐶𝑅𝑖,𝑔
𝑠 = 𝐶𝑅𝑖,𝑔−1

𝑠  

27:         end if 

28:         if 𝑟𝑎𝑛𝑑3 < 𝜏𝑖,𝑔−1
𝑠  then //Adaptation of 𝛾 

29:             Generate 𝛾𝑖,𝑔
𝑠 = 𝑟𝑎𝑛𝑑 

30:         else 

31:             𝛾𝑖,𝑔
𝑠 = 𝛾𝑖,𝑔−1

𝑠  

32:         end if 
33:  
34:         /* Update real best solution 

35:         If the Tchebycheff value of 𝒙𝑗 is better than 𝑟best𝑖, 𝑗 ∈ 𝐵𝑖(𝑁𝑛) then 

36:             Set 𝒓best𝑖 = 𝒙𝑗 

37:         end if 
38:  
39:         /* Reproduction 

40:         Generate a new solution 𝒙𝑖
′ by DE operator (repair it if necessary) 

41:         Apply polynomial mutation to produce 𝒙𝑖
′′ (repair it if necessary) 

42:  

43:         Update 𝑧∗, 𝑧𝑘
∗ = min(𝑧𝑘

∗ , 𝑓𝑘(𝒙𝑖
′′)) and set 𝑛𝑟 = 0 

44:  
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45:         /* Selection 

46:         for each subproblem 𝑗 ∈ 𝐵𝑖(𝑁𝑛) do 

47:             if 𝑛𝑟 < 𝑁𝑅 then 

48:                 if 𝑔𝑡𝑒(𝒙𝑖
′′|𝜆𝑗, 𝑧∗) ≤ 𝑔𝑡𝑒(𝒙𝑗|𝜆𝑗, 𝑧∗) then 

49:                     Replace 𝒙𝑗 by 𝒙𝑖
′′, increment 𝑛𝑟 and set 𝑆𝑅𝑖,𝑗,𝑔

𝑠 = 1 

50:                     if 𝑔𝑡𝑒(𝒙𝑖
′′|𝜆𝑗 , 𝑧∗) < 𝑔𝑡𝑒(𝒙𝑗|𝜆𝑗, 𝑧∗) then 

51:                         Set 𝐷𝑆𝑅𝑖,𝑗,𝑔
𝑠 = 1//true is equal to one 

52:                     end if 
53:                 end if 
54:             end if 
55:         end for 
56:  
57:         /* Update mean of scaling factor 

58:         if any 𝐷𝑆𝑅𝑖,𝑗,𝑔
𝑠  of subproblem 𝑗 ∈ 𝐵𝑖(𝑁𝑛) be true then 

59:             Update 𝜇𝐹,𝑖,𝑔+1
𝑠  

60:         else 

61:             𝜇𝐹,𝑖,𝑔+1
𝑠 = 𝜇𝐹,𝑖,𝑔

𝑠  

62:         end if 
63:  

64:         Calculate all 𝐴𝑆𝑅𝑖,𝑗,𝑔
𝑠  and 𝜏𝑖,𝑔

𝑠  for each strategy 

65:     end for 

66:     Calculate and update the probability 𝑝𝑠,𝑔+1 for each strategy 

67:     𝑔 = 𝑔 + 1 

68: until 𝑔 > 𝐺 
 
---------------------------------------------- 
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4.2. Many-Objective Performance Measurements 
 
To assess the performance of various algorithms in solving the MaCSP2SAL in Pareto sense, five groups of 
performance measurements suggested by Jiang, et al. [59] and Chutima and Olarnviwatchai [7] are used in 
this paper. Obviously, a good algorithm should create various POSs, most of which are located on the 
approximated true PF. In addition, it would be even better if these POSs are distributed uniformly along the 
approximated true PF. Since the true PF of the MaCSP2SAL is unknown, the approximated true PF is derived 
from combining all POSs of all algorithms and applying non-dominated sorting on them. The resultant first 
PF is an approximated true PF.    
 

(a) Convergence metric: This metric computes the generational distance of algorithm 𝑗 (𝐺𝐷) which is the least 
distance between the obtained POSs and the POSs on the approximated true PF. It indicates the 

proximity level between the non-dominated solutions of algorithm 𝑗 and those in the approximated true 

PF. If this metric is close to zero, the PF of algorithm 𝑗 is close to the approximated true PF. The 

formulation of 𝐺𝐷 is as follows. 
 

 𝐺𝐷(𝑆𝑗, 𝑆∗) =
1

|𝑆𝑗|
∑ min

 
{𝑑𝑥𝑦|𝑦 ∈ 𝑆∗}𝑥∈𝑆𝑗

 (33) 

 𝑑𝑥𝑦 = √∑ (
𝑓𝑘(𝑥)−𝑓𝑘(𝑦)

𝑓𝑘
max−𝑓𝑘

min )
2

𝐾
𝑘=1   (34) 

where 

 𝐺𝐷𝑗  generational distance of algorithm 𝑗 

 𝑆𝑗  non-dominated solutions on the first PF of algorithm 𝑗 

 𝑆∗ non-dominated solutions on the approximated true PF 

 |𝑆𝑗| number of non-dominated solutions on the first PF of algorithm 𝑗 

 |𝑆∗| number of non-dominated solutions on the approximated true PF 

 𝑑𝑥𝑦  Euclidean distance between the obtained solution (𝑥) and solution (𝑦) on the approximated 

true PF 

 𝑓𝑘
max maximum value of the objective 𝑘 of non-dominated solutions on the approximated true PF 

 𝑓𝑘
min minimum value of the objective 𝑘 of non-dominated solutions on the approximated true PF 

 𝑓𝑘(𝑥) value of objective 𝑘 of the obtained solution (𝑥) 

 𝑓𝑘(𝑦) value of objective 𝑘 of the solution (𝑦) on the approximated true PF 

 𝑥 obtained solution 

 𝑦 solution on the approximated true PF 
 
(b) Convergence and diversity metric: This metric indicates both the convergence and diversity of the first PF of 

the algorithm on a single scale. It computes the inverted generational distance of algorithm 𝑗 (𝐼𝐺𝐷) which 

is the Euclidian distance between the non-dominated solutions on the first PF of algorithm 𝑗 and the 
non-dominated solutions on the approximated true PF. If this metric is close to zero, the non-dominated 

solutions of the algorithm 𝑗 are not only converged to the approximated true PF but also they are diverse. 

The formulation of 𝐼𝐺𝐷 is as follows.    
 

 𝐼𝐺𝐷(𝑆∗, 𝑆𝑗) =
1

|𝑆∗|
∑ min

 
{𝑑𝑥𝑦|𝑥 ∈ 𝑆𝑗}𝑦∈𝑆∗  (35) 

 
(c) Capacity metric: This metric computes the ratio between the non-dominated solutions on the first PF of 

algorithm 𝑗 which are on the approximated true PF and its owned non-dominated solutions on the first 

PF (𝑅𝑁𝐷𝑆1), or between the non-dominated solutions on the first PF of algorithm 𝑗 which are on the 

approximated true PF and the non-dominated solutions on the approximated true PF (𝑅𝑁𝐷𝑆2). The 

higher the value of 𝑅𝑁𝐷𝑆1 or 𝑅𝑁𝐷𝑆2 is the better algorithm. The formulations of 𝑅𝑁𝐷𝑆1 and 𝑅𝑁𝐷𝑆2 are 

as follows. (Note: 𝑦 ≺ 𝑥 meaning 𝑥 is not dominated by 𝑦)     
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 𝑅𝑁𝐷𝑆1(𝑆𝑗) =
|𝑆𝑗−{𝑥∈𝑆𝑗|∃𝑦∈𝑆∗:𝑦≺𝑥}|

|𝑆𝑗|
  (36) 

 𝑅𝑁𝐷𝑆2(𝑆𝑗) =
|𝑆𝑗−{𝑥∈𝑆𝑗|∃𝑦∈𝑆∗:𝑦≺𝑥}|

|𝑆∗|
  (37) 

 
(d) Diversity metric: This metric indicates both the distribution and spread of non-dominated solutions on the 

first PF of algorithm 𝑗  simultaneously. The good algorithm should have non-dominated solution 
distributed uniformly and covered all the extreme points of the approximated true PF. The formulation 
of the diversity metric is as follows. (Note: the lower the value of this metric the better algorithm) 

 

 ∆∗(𝑆𝑗, 𝑆∗) =
∑ 𝑑(𝐸𝑐)𝐶

𝑐=1 +∑ |𝑑(𝑥𝑖)−�̅�|
|𝑆𝑗|

𝑖=1

∑ 𝑑(𝐸𝑐)𝐶
𝑐=1 +|𝑆𝑗|�̅�

  (38) 

 𝑑(𝑥𝑖) = min
𝑦∈𝑆𝑗

√∑ (
𝑓𝑘(𝑥𝑖)−𝑓𝑘(𝑥𝑦)

𝑓𝑘
max−𝑓𝑘

min )
2

𝐾
𝑘=1   (39) 

where 

 𝑑(𝑥𝑖)  Euclidean distance between consecutive non-dominated solutions 

 �̅� average of 𝑑(𝑥𝑖) 

 𝑑(𝐸𝑐) Euclidean distance from the non-dominated solutions of the algorithm to the extreme 
solutions of the approximated true PF.  

 𝐶 number of extreme solutions 
 
(e) Computational time metric: This metric indicates the CPU time spent by the algorithm until the final solution 

is reached. A good algorithm should be able to search for a good solution by using less CPU time. 
 

5. Experimental Design 
 
5.1. Problem Sets 
 
In order to evaluate the effectiveness of AMOEA/D-DE against its competitor algorithms on various 
production situations, 18 testbed MaCSP2SAL problems with various characteristics are employed (Table 1). 
The problems are grouped into three different sizes, i.e. small (S1-S6), medium (M1-M6) and large (L1-L6). 
The sizes of the problems are classified based on the daily number of cars to be produced which is ranged 
from 15-200. In each problem size, different production requirements are used including a) order-related 
requirements (i.e. number of car models, MPS, daily production orders), b) car-related requirements (i.e. 

number of options, number of colours, 𝐶𝐵𝑆𝑚𝑎𝑥 ), and c) production-related requirements (i.e. ratio 
constraints, number of parts, number of tasks in the precedence diagram, number of mated stations and 
number of stations).  

All the requirements used in setting various testbed platforms are adapted from problems published in 

literature, i.e. colour, option and 𝑅𝐶  from Solnon, et al. [11]; mixed-model assembly line sequencing 
problems from McMullen [34] and Mansouri [33]; and 2SAL from Bartholdi [60], Kim, et al. [61] and Özcan 
and Toklu [62]. Table 1 also shows the feasible number of solutions for each problem as suggested by Hyun, 
et al. [28] to indicate the complexity of search space. In addition, line balancing is conducted for each 
particular 2SAL using the PSONK algorithm proposed by Chutima and Chimklai [63] to determine the 
number of mated stations, number of workstations and task-to-station assignments. These prerequisite input 
information is necessary before solving MaCSP2SALs.  
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Table 1. Testbed problems. 
 

Problem Number of car 
models 

MPS Daily 
production 

orders 

Number of 
tasks 

Number of 
mated stations 

Number of  
workstations 

Small S1 5 7:3:2:2:1 15 24 11 22 

S2 5 4:3:3:3:2 15 24 11 22 

S3 5 8:7:2:2:1 20 35 11 22 

S4 5 5:4:4:4:3 20 35 11 22 

S5 10 7:5:1:1:1:1:1:1:1:1 20 53 9 18 

S6 10 4:4:4:2:1:1:1:1:1:1 20 53 8 16 

Medium M1 10 6:5:5:5:4:4:3:3:3:2 40 65 8 16 

M2 10 11:7:5:5:4:2:2:2:1:1 40 65 7 14 

M3 12 8:7:5:5:5:4:4:4:3:3:1:1 50 83 17 34 

M4 12 12:9:8:6:5:3:2:1:1:1:1:1 50 83 16 32 

M5 14 8:7:7:7:6:6:5:4:4:2:1:1:1:1 60 100 9 18 

M6 14 15:15:5:4:4:4:3:2:2:2:1:1:1:1 60 100 10 20 

Large L1 15 20:20:20:15:15:1:1:1:1:1:1:1:1:1:1 100 148 14 28 

L2 15 15:15:10:10:10:10:10:10:4:1:1:1:1:1:1 100 148 13 26 

L3 15 20:20:20:15:15:10:20:10:5:20:5:10:10:10:10 200 205 14 28 

L4 15 25:20:15:20:10:10:15:5:15:15:10:15:10:10:5 200 205 15 30 

L5 18 45:30:30:15:10:10:10:8:7:7:7:7:5:3:3:1:1:1 200 297 39 78 

L6 18 25:25:20:20:20:20:15:10:10:5:5:5:5:5:5:2:2:1 200 297 39 78 
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Table 1. Testbed problems (Continue). 
 

Problem Number 
of options 

𝑅𝐶 Constraint (𝑝/𝑞) Number 
of colours 

𝐶𝐵𝑆𝑚𝑎𝑥 Number 
of parts 

Possible number  
of solutions 

Small S1 4 1/1,1/2,2/5,1/2 5 3 10 1.08E+07 

S2 4 1/1,1/2,2/5,1/2 5 3 10 1.26E+08 

S3 4 1/3,1/2,1/3,1/2 5 3 10 2.99E+09 

S4 4 1/3,1/2,1/3,1/2 5 3 10 2.44E+11 

S5 7 2/5,5/9,10/13,1/2,1/2,1/2,2/3 9 4 20 4.02E+12 

S6 7 2/5,5/8,2/3,1/2,1/2,1/2,1/2 9 4 20 8.80E+13 

Medium M1 7 1/3,1/2,1/5,5/9,1/4,1/2,5/8 10 4 30 2.64E+33 

M2 7 1/3,1/2,1/6,5/9,2/9,1/2,2/3 10 4 30 1.47E+30 

M3 8 1/3,1/2,5/12,1/2,2/3,5/11,1/3,5/9 10 4 30 1.74E+44 

M4 8 1/3,1/2,5/12,1/2,2/3,5/11,1/3,5/9 10 4 30 4.19E+39 

M5 10 10/19,10/21,1/6,5/14,2/3,1/2,10/17,10/17,2/5,10/13 12 5 45 2.25E+55 

M6 10 5/8,5/8,1/5,5/9,2/3,5/13,5/7,5/7,10/21,10/11 12 5 45 6.11E+49 

Large L1 10 2/3,10/21,5/7,5/11,2/9,2/3,5/6,1/2,5/9,1/5 15 7 60 3.79E+78 

L2 10 5/9,2/5,10/21,5/14,2/9,2/3,2/3,1/2,2/7,1/2 15 7 60 9.96E+92 

L3 12 5/9,10/13,1/4,1/2,2/5,1/2,5/12,1/2,5/16,5/11,1/2,10/21 15 7 60 >1.00E+100 

L4 12 1/2,5/7,1/3,1/2,2/5,1/2,5/12,1/2,10/13,10/21,1/2,10/19 15 7 60 >1.00E+100 

L5 12 5/22,5/13,10/33,5/7,1/12,1/3,5/7,5/8,5/8,10/19,5/16,5/9 18 9 75 >1.00E+100 

L6 12 2/11,5/13,5/17,2/3,1/12,2/5,5/9,10/17,10/17,10/19,5/19,5/8 18 9 75 >1.00E+100 
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5.2. Parameter Settings of Algorithms 
 
The proposed algorithm, AMOEA/D-DE, and its contestants (i.e. COIN-E, MODE, MOEA/D, 
MODE/D) are carefully programmed in MathLab R2015b software and running on an Intel(R) Core(TM) 
i7-4790 CPU @ 3.60GHz, 16 GB RAM, 64 bit operating system personal computer with Microsoft Windows 
10 Pro. To make all algorithms worked at their best performance, the key controllable parameters of each 
algorithm are initially identified. The parameter tuning process starts with the adaptation of the key 
parameters suggested in the literature as initial setting points and then fine tuning all significant parameters 
are systematically conducted by the designs of experiments. Table 2 shows the resultant parameter settings 
of all algorithms.     
 
Table 2. Parameter settings of all algorithms. 
 

Parameter settings COIN-E MODE MOEA/D MODE/D AMOEA/D-DE 

Population size (Np) 133 133 133 133 133 

Maximum number of generation (G) 3000 3000 3000 3000 3000 

DE Strategy - DE/rand/1/bin - DE/rand/1/bin 

DE/rand/1/bin 
& DE/rbest/1/bin 

& DE/rand-to-
rbest/1/bin 

Crossover method - - PMX - - 

Mutation method - - - PM PM 

Probability of crossover - - 1.0 - - 

Probability of mutation (pm) - - - 1/nc 1/nc 

Distribution index of polynomial mutation - - - 20 20 

Scale of the base vectors (γ) - - - - 0.5 

Number of weight vectors in the 
neighbourhood (Nn) 

- - 5 
S1: 5 

S2-9.2: 20 
20 

Maximal number of solutions replaced by 
each offspring (NR) 

- - 

S1-S2: 5 
S3-M1: 2 

M2: 5 
M3: 5 
M4: 2 
M5: 2 
M6: 2 
L1: 5 
L2: 5 
L3: 5 
L4: 2 
L5: 5 
L6: 5 

S1: 2 
S2: 5 

S3-S4: 2 
S5: 5 
S6: 2 
M1: 5 
M2: 2 

M3-M4: 5 
M5-M6: 2 
L1-L2: 5 

L3: 2 
L4: 5 

L5-L6: 2 

S1: 2 
S2-S3: 5 
S4-S5: 2 

S6: 5 
M1-M2: 2 
M3-M6: 5 
L1-L3: 2 

L4: 5 
L5: 2 
L6: 5 

Scaling factor (F) - 

S1-S3: 1.0 
S4: 0.5 

S5-S6: 1.0 
M1: 0.5 

M2-M3: 1.0 
M4: 0.5 
M5: 1.0 
M6: 0.5 
L1: 1.0 

L2-L6: 0.5 

- 

S1: 0.5 
S2: 1.0 
S3: 1.0 
S4: 0.5 
S5: 1.0 

S6-M4: 0.5 
M5: 1.0 

M6-L4: 0.5 
L5: 1.0 
L6: 1.0 

S1: 0.5 
S2: 1.0 
S3: 1.0 
S4: 0.5 
S5: 1.0 

S6-M4: 0.5 
M5: 1.0 

M6-L4: 0.5 
L5: 1.0 
L6: 1.0 

Crossover rate (CR) - 

S1: 0.9 
S2: 0.9 
S3: 0.9 
S4: 0.7 
S5: 0.9 
S6: 0.7 

M1-L6: 0.9 

- 

S1-S5: 0.9 
S6: 1.0 
M1: 1.0 
M2: 0.9 

M3-M6: 1.0 
L1-8.2: 0.9 

L5: 1.0 
L6: 1.0 

S1-S5: 0.9 
S6: 1.0 
M1: 1.0 
M2: 0.9 

M3-M6: 1.0 
L1-8.2: 0.9 

L5: 1.0 
L6: 1.0 
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6. Experimental results 
 
The performances of AMOEA/D-DE and it alternative algorithms after implemented in various 

characteristics of MaCSP2SAL are reported based on six key metrics, i.e. generational distance (𝐺𝐷), inverted 

generational distance (𝐼𝐺𝐷), ratio of non-dominated solution type 1 (𝑅𝑁𝐷𝑆1) and type 2 (𝑅𝑁𝐷𝑆2), distribution 

and spread (∆∗) and CPU time. For the statistical reason, each algorithm is run for 3 replicates, and its 
corresponding mean and standard deviation are computed (Table 3). The details of the experimental results 
are elaborated as follows. 
 

 𝐺𝐷: The 𝐺𝐷 metric indicates the level of overlap between the obtained PF of the given algorithm and 
the approximated true PF. The lower value is the better algorithm. The results are clearly shown that for 

medium- and large-sized problems, AMOEA/D-DE outperforms the other algorithms since its 𝐺𝐷 
metric is lowest. Although AMOEA/D-DE is the best in 3 out of 6 problems (S1, S4, S5 and S6) for 

small-sized problems, it is ranked second best in S2, S3 and S4. Moreover, its 𝐺𝐷 metric is just marginally 
larger than the best. 

 

 𝐼𝐺𝐷: The 𝐼𝐺𝐷 metric measures both convergence and diversity of the obtained PF of the algorithm by 

using a single gauge. The lower value is the better algorithm. Similar to the 𝐺𝐷 metric, AMOEA/D-DE 
performs best for medium- and large-sized problems. Apart from being ranked second best in 3 out of 
6 of the small-sized problems (S1, S2 and S4), AMOEA/D-DE is the champion for the rest of them. In 
addition, the differences between the second best (AMOEA/D-DE) and the best one are trivial.  

 

 𝑅𝑁𝐷𝑆1: The 𝑅𝑁𝐷𝑆1 metric is a type of the capacity metric which calculates the proportion between the 
numbers of non-dominated solutions on the obtained PF of the algorithm which are located on the 
approximated true PF and the number of its owned non-dominated solutions on the obtained PF. If this 
proportion is high, meaning that most of the obtained non-dominated solutions of the algorithm are on 
the approximated true PF. Therefore, the higher the value is the better algorithm. Obviously, for 

medium- and large-sized problems, the 𝑅𝑁𝐷𝑆1 metric of AMOEA/D-DE is much higher than the others. 
For small-sized problems, 3 out of 6 problems (S2, S3 and S4), AMOEA/D-DE is the second best. 

However, the values of the 𝑅𝑁𝐷𝑆1 metric obtained by the best in comparison with AMOEA/D-DE are 

insignificant. It is observed that in some problems COIN-E and MODE/D have 𝑅𝑁𝐷𝑆1 equal to 0 which 
means no segment of their obtained PF is overlapped with the approximated true PF at all.   

 

 𝑅𝑁𝐷𝑆2: The 𝑅𝑁𝐷𝑆2 metric is quite similar to 𝑅𝑁𝐷𝑆1. However, the difference is in the denominator of 
the proportion which is the number of non-dominated solutions on the approximated true PF. 

AMOEA/D-DE gives the best 𝑅𝑁𝐷𝑆2 metric for medium- and large-sized problems. Only 3 out of 6 of 
the small-sized problems (S1, S2 and S4) that AMOEA/D-DE is the second best and again the values 
of the first and second best is more or less the same. 

 

 ∆∗ : The ∆∗  metric indicates the diversity in terms of distribution and spread of the obtained non-
dominated solutions of the algorithm. The lower value is the better algorithm. It is observed that COIN-

E and MODE shows best ∆∗ in most of the problem sizes. Meanwhile, AMOEA/D-DE gives best ∆∗ 

in 1 out of 6 of the large-sized problems only. However, the ∆∗ metric should be carefully interpreted. It 
is meaningless if an algorithm (e.g. MODE or COIN-E) demonstrates good spread metric but its non-
dominated solutions are not located on the approximated true PF. 

 

 CPU time: The time to solution and quality of solution are always a key trade-off aspect when comparing 
the performance of different algorithms. Of course, we would like to have an algorithm that could 
provide the best solution in a short time like in case of AMOEA/D-DE under the problem L6. However, 
most of the time, this expectation is unrealistic. It is obvious that MOEA/D often dominates the others 
since it consumes the least CPU time to reach final solutions.    
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Table 3. Experimental results. 
 

Algorithm 
Problem Set 

S1 S2 S3 S4 S5 S6 M1 M2 M3 M4 M5 M6 L1 L2 L3 L4 L5 L6 

Generational Distance 

AMOEA/D-DE 
0.0047 

(0.0040) 

0.0274 

(0.0030) 

0.0266 

(0.0076) 

0.0210 

(0.0141) 

0.0352 

(0.0166) 

0.0235 

(0.0065) 

0.0226 

(0.0302) 

0.0214 

(0.0306) 

0.0078 

(0.0046) 

0.0062 

(0.0024) 

0.0072 

(0.0043) 

0.0123 

(0.0084) 

0.0085 

(0.0037) 

0.0118 

(0.0082) 

0.0397 

(0.0284) 

0.0183 

(0.0078) 

0.0219 

(0.0122) 

0.0155 

(0.0081) 

MODE/D 
0.0124 

(0.0040) 
0.0210 

(0.0145) 

0.0278 

(0.0027) 

0.0291 

(0.0087) 

0.0361 

(0.0060) 

0.0477 

(0.0052) 

0.0493 

(0.0151) 

0.0636 

(0.0256) 

0.0393 

(0.0150) 

0.0628 

(0.0479) 

0.0481 

(0.0098) 

0.0311 

(0.0338) 

0.0357 

(0.0233) 

0.0514 

(0.0378) 

0.1004 

(0.0790) 

0.0604 

(0.0552) 

0.0521 

(0.0434) 

0.1321 

(0.1082) 

MOEA/D 
0.0204 

(0.0168) 

0.0893 

(0.0689) 
0.0251 

(0.0131) 

0.0196 

(0.0095) 

0.0399 

(0.0430) 

0.0487 

(0.0404) 

0.0985 

(0.0212) 

0.0448 

(0.0088) 

0.1182 

(0.0252) 

0.1710 

(0.0544) 

0.0611 

(0.0441) 

0.0611 

(0.0511) 

0.1282 

(0.0412) 

0.0614 

(0.0204) 

0.1854 

(0.0661) 

0.1109 

(0.1283) 

0.1219 

(0.0355) 

0.1082 

(0.0923) 

MODE 
0.0488 

(0.0107) 

0.0777 

(0.0224) 

0.1118 

(0.0174) 

0.1490 

(0.0201) 

0.1407 

(0.0285) 

0.1311 

(0.0219) 

0.2151 

(0.0966) 

0.1816 

(0.0244) 

0.0677 

(0.0711) 

0.1494 

(0.0637) 

0.0946 

(0.0520) 

0.1179 

(0.0216) 

0.2449 

(0.0361) 

0.1881 

(0.1442) 

0.3203 

(0.0267) 

0.4521 

(0.0912) 

0.4089 

(0.0446) 

0.3041 

(0.0226) 

COIN-E 
0.0773 

(0.0196) 

0.1208 

(0.0177) 

0.1325 

(0.0131) 

0.0999 

(0.0154) 

0.2109 

(0.0339) 

0.1718 

(0.0154) 

0.1596 

(0.0149) 

0.1080 

(0.0091) 

0.1327 

(0.0074) 

0.2086 

(0.0471) 

0.1029 

(0.0138) 

0.1658 

(0.0166) 

0.1866 

(0.0227) 

0.2146 

(0.0093) 

0.2703 

(0.0267) 

0.4021 

(0.0912) 

0.3589 

(0.0446) 

0.2541 

(0.0226) 

Inverted Generational Distance 

AMOEA/D-DE 
0.1477 

(0.0056) 

0.1586 

(0.0040) 
0.1516 

(0.0033) 

0.1828 

(0.0047) 
0.1606 

(0.0078) 

0.1643 

(0.0032) 

0.1918 

(0.0036) 

0.2025 

(0.0090) 

0.1944 

(0.0067) 

0.1797 

(0.0044) 

0.1808 

(0.0108) 

0.1498 

(0.0023) 

0.2100 

(0.0319) 

0.1897 

(0.0095) 

0.1694 

(0.0120) 

0.1795 

(0.0027) 

0.1462 

(0.0082) 

0.1592 

(0.0053) 

MODE/D 
0.1528 

(0.0020) 

0.1672 

(0.0064) 

0.1568 

(0.0050) 
0.1817 

(0.0022) 

0.1683 

(0.0057) 

0.1800 

(0.0168) 

0.2251 

(0.0297) 

0.2197 

(0.0177) 

0.2055 

(0.0153) 

0.2204 

(0.0071) 

0.1885 

(0.0126) 

0.1717 

(0.0039) 

0.2881 

(0.0181) 

0.2508 

(0.0200) 

0.3409 

(0.0114) 

0.2877 

(0.0139) 

0.2575 

(0.0124) 

0.2682 

(0.0631) 

MOEA/D 
0.1610 

(0.0097) 

0.2152 

(0.0490) 

0.1558 

(0.0121) 

0.1833 

(0.0070) 

0.1695 

(0.0269) 

0.1770 

(0.0041) 

0.2476 

(0.0269) 

0.2104 

(0.0165) 

0.2290 

(0.0193) 

0.2949 

(0.0684) 

0.2140 

(0.0098) 

0.1929 

(0.0081) 

0.2730 

(0.0237) 

0.2256 

(0.0070) 

0.2818 

(0.0383) 

0.2532 

(0.0760) 

0.2287 

(0.0241) 

0.2330 

(0.0437) 

MODE 
0.1141 

(0.0075) 

0.1438 

(0.0041) 

0.1961 

(0.0042) 

0.2412 

(0.0128) 

0.1928 

(0.0195) 

0.2341 

(0.0284) 

0.2964 

(0.0819) 

0.2886 

(0.0233) 

0.2581 

(0.0090) 

0.2972 

(0.0294) 

0.2496 

(0.0459) 

0.2412 

(0.0137) 

0.4383 

(0.0624) 

0.3693 

(0.1934) 

0.5074 

(0.0682) 

0.7904 

(0.2313) 

0.5525 

(0.0653) 

0.5314 

(0.0500) 

COIN-E 
0.1521 

(0.0142) 

0.1693 

(0.0147) 

0.1882 

(0.0099) 

0.1892 

(0.0065) 

0.2145 

(0.0126) 

0.2358 

(0.0182) 

0.3091 

(0.0079) 

0.2421 

(0.0214) 

0.3024 

(0.0182) 

0.2876 

(0.0158) 

0.2880 

(0.0142) 

0.3522 

(0.0228) 

0.3792 

(0.0412) 

0.3916 

(0.0077) 

0.4574 

(0.0682) 

0.7404 

(0.2313) 

0.5025 

(0.0653) 

0.4814 

(0.0500) 

𝑅𝑁𝐷𝑆1  

AMOEA/D-DE 
0.9713 

(0.0294) 

0.7389 

(0.0051) 

0.6852 

(0.0456) 

0.7424 

(0.1496) 

0.6565 

(0.1447) 

0.7547 

(0.0758) 

0.8059 

(0.2478) 

0.8104 

(0.2560) 

0.9183 

(0.0289) 

0.9423 

(0.0290) 

0.8811 

(0.0671) 

0.8428 

(0.0959) 

0.8858 

(0.0558) 

0.8842 

(0.0717) 

0.6749 

(0.1861) 

0.8401 

(0.0509) 

0.7647 

(0.0952) 

0.8230 

(0.0729) 

MODE/D 
0.8847 

(0.0492) 

0.7900 

(0.1238) 

0.6855 

(0.0163) 

0.6927 

(0.0726) 

0.6230 

(0.0182) 

0.5535 

(0.0247) 

0.5321 

(0.1364) 

0.4613 

(0.2287) 

0.6349 

(0.1237) 

0.4504 

(0.3324) 

0.3700 

(0.1504) 

0.6846 

(0.2931) 

0.4612 

(0.3197) 

0.4737 

(0.3536) 

0.2782 

(0.4002) 

0.4461 

(0.4053) 

0.3885 

(0.4823) 

0.2456 

(0.2132) 

MOEA/D 
0.8142 

(0.0872) 

0.4160 

(0.4482) 

0.7056 

(0.1085) 

0.7827 

(0.0784) 

0.5799 

(0.3664) 

0.6388 

(0.2755) 

0.2632 

(0.1304) 

0.5987 

(0.0438) 

0.2356 

(0.1116) 

0.1604 

(0.0768) 

0.4135 

(0.2751) 

0.5363 

(0.2557) 

0.0277 

(0.0397) 

0.3301 

(0.2390) 

0.0513 

(0.0888) 

0.4417 

(0.3832) 

0.0224 

(0.0194) 

0.2639 

(0.4057) 

MODE 
0.5714 

(0.0796) 

0.4236 

(0.1391) 

0.3133 

(0.0533) 

0.2231 

(0.0891) 

0.1679 

(0.0981) 

0.2281 

(0.0838) 

0.0506 

(0.0876) 

0.0029 

(0.0050) 

0.4642 

(0.3726) 

0.1074 

(0.0931) 

0.1340 

(0.2166) 

0.0455 

(0.0710) 

0.0000 

(0.0000) 

0.0547 

(0.0806) 

0.0000 

(0.0000) 

0.0000 

(0.0000) 

0.0000 

(0.0000) 

0.0000 

(0.0000) 

COIN-E 
0.2281 

(0.0730) 

0.1619 

(0.0830) 

0.1128 

(0.0615) 

0.2206 

(0.0715) 

0.0577 

(0.0228) 

0.0501 

(0.0371) 

0.0877 

(0.0339) 

0.1579 

(0.0199) 

0.0852 

(0.0087) 

0.0627 

(0.0695) 

0.1429 

(0.0725) 

0.0640 

(0.0434) 

0.0827 

(0.0615) 

0.0827 

(0.0199) 

0.0000 

(0.0000) 

0.0000 

(0.0000) 

0.0000 

(0.0000) 

0.0000 

(0.0000) 

Note: The results are shown in terms of mean (standard deviation). The bold and underline element represents the best performance in each criterion and problem set. 
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Table 3. Experimental results (Continue). 
 

Algorithm 
Problem Set 

S1 S2 S3 S4 S5 S6 M1 M2 M3 M4 M5 M6 L1 L2 L3 L4 L5 L6 

𝑅𝑁𝐷𝑆2  

AMOEA/D-DE 
0.1382 

(0.0081) 

0.1254 

(0.0026) 

0.0743 

(0.0036) 

0.0548 

(0.0108) 

0.0848 

(0.0191) 

0.0961 

(0.0083) 

0.1316 

(0.0378) 

0.1090 

(0.0373) 

0.1202 

(0.0006) 

0.1704 

(0.0065) 

0.1304 

(0.0113) 

0.1246 

(0.0130) 

0.1555 

(0.0226) 

0.1436 

(0.0109) 

0.0416 

(0.0117) 

0.0279 

(0.0020) 

0.0397 

(0.0059) 

0.0287 

(0.0008) 

MODE/D 
0.1133 

(0.0076) 

0.1126 

(0.0162) 

0.0692 

(0.0035) 

0.0509 

(0.0076) 

0.0808 

(0.0049) 

0.0647 

(0.0049) 

0.0856 

(0.0242) 

0.0532 

(0.0234) 

0.0737 

(0.0194) 

0.0713 

(0.0541) 

0.0476 

(0.0172) 

0.0929 

(0.0405) 

0.0954 

(0.0661) 

0.0848 

(0.0633) 

0.0180 

(0.0260) 

0.0168 

(0.0153) 

0.0218 

(0.0271) 

0.0091 

(0.0079) 

MOEA/D 
0.1066 

(0.0088) 

0.0623 

(0.0752) 

0.0711 

(0.0142) 
0.0571 

(0.0082) 

0.0731 

(0.0499) 

0.0826 

(0.0358) 

0.0526 

(0.0261) 

0.0900 

(0.0059) 

0.0350 

(0.0166) 

0.0319 

(0.0153) 

0.0677 

(0.0450) 

0.0846 

(0.0403) 

0.0052 

(0.0077) 

0.0511 

(0.0377) 

0.0029 

(0.0051) 

0.0145 

(0.0125) 

0.0011 

(0.0010) 

0.0090 

(0.0139) 

MODE 
0.1529 

(0.0213) 

0.1269 

(0.0417) 

0.0400 

(0.0068) 

0.0205 

(0.0082) 

0.0301 

(0.0176) 

0.0370 

(0.0136) 

0.0085 

(0.0147) 

0.0004 

(0.0007) 

0.0569 

(0.0475) 

0.0184 

(0.0160) 

0.0185 

(0.0299) 

0.0059 

(0.0093) 

0.0000 

(0.0000) 

0.0094 

(0.0141) 

0.0000 

(0.0000) 

0.0000 

(0.0000) 

0.0000 

(0.0000) 

0.0000 

(0.0000) 

COIN-E 
0.0610 

(0.0195) 

0.0473 

(0.0237) 

0.0144 

(0.0079) 

0.0203 

(0.0066) 

0.0103 

(0.0041) 

0.0081 

(0.0060) 

0.0175 

(0.0068) 

0.0239 

(0.0030) 

0.0126 

(0.0013) 

0.0125 

(0.0138) 

0.0234 

(0.0119) 

0.0099 

(0.0067) 

0.0171 

(0.0127) 

0.0148 

(0.0036) 

0.0000 

(0.0000) 

0.0000 

(0.0000) 

0.0000 

(0.0000) 

0.0000 

(0.0000) 

Diversity (Distribution and Spread) 

AMOEA/D-DE 
0.7953 

(0.0218) 

0.5633 

(0.0566) 

0.5332 

(0.0125) 

0.4916 

(0.0220) 

0.7747 

(0.0242) 

0.6524 

(0.0311) 

0.5779 

(0.0326) 

0.5729 

(0.0431) 

0.6286 

(0.0193) 

0.4823 

(0.0310) 

0.7012 

(0.0154) 

0.6609 

(0.0362) 

0.7351 

(0.0277) 

0.6857 

(0.0265) 
0.5932 

(0.0195) 

0.6193 

(0.0181) 

0.6173 

(0.0058) 

0.5649 

(0.0430) 

MODE/D 
0.7946 

(0.0570) 

0.5575 

(0.0239) 

0.5573 

(0.0662) 

0.4863 

(0.0092) 

0.7985 

(0.0136) 

0.6480 

(0.0508) 

0.5920 

(0.0261) 

0.6293 

(0.0823) 

0.6673 

(0.0531) 

0.5605 

(0.0178) 

0.7572 

(0.0501) 

0.7364 

(0.0333) 

0.7387 

(0.0521) 

0.7705 

(0.1586) 

0.6892 

(0.0419) 

0.6413 

(0.0523) 

0.7194 

(0.0627) 

0.6310 

(0.0789) 

MOEA/D 
0.8149 

(0.0161) 

0.6055 

(0.1142) 

0.5716 

(0.0343) 

0.5144 

(0.0100) 

0.8041 

(0.0290) 

0.6628 

(0.0512) 

0.5196 

(0.0288) 

0.5910 

(0.0462) 

0.6473 

(0.0360) 

0.5294 

(0.0283) 

0.7329 

(0.0175) 

0.7588 

(0.0329) 

0.7098 

(0.0413) 

0.6625 

(0.0219) 

0.7030 

(0.0114) 

0.6457 

(0.0254) 

0.6490 

(0.0934) 

0.6117 

(0.0214) 

MODE 
0.5663 

(0.0838) 

0.4736 

(0.0546) 

0.3468 

(0.0353) 

0.3644 

(0.0281) 
0.6749 

(0.0151) 

0.5569 

(0.0121) 

0.5337 

(0.0436) 

0.5279 

(0.0285) 

0.4541 

(0.0261) 

0.3883 

(0.0646) 

0.5994 

(0.0283) 

0.6154 

(0.0368) 

0.6861 

(0.0119) 

0.6078 

(0.0248) 

0.6198 

(0.0415) 
0.5202 

(0.0564) 

0.5557 

(0.0372) 

0.4766 

(0.0627) 

COIN-E 
0.7068 

(0.0323) 

0.5248 

(0.0658) 

0.3664 

(0.0088) 

0.3609 

(0.0103) 

0.6890 

(0.0144) 

0.5577 

(0.0112) 

0.2974 

(0.0313) 

0.3581 

(0.0115) 

0.3185 

(0.0073) 

0.3376 

(0.0153) 

0.3484 

(0.0321) 

0.3461 

(0.0366) 

0.3031 

(0.0218) 

0.3725 

(0.0310) 

0.6392 

(0.0419) 

0.5913 

(0.0523) 

0.6694 

(0.0627) 

0.5810 

(0.0789) 

Computational time (sec.) 

AMOEA/D-DE 
683.85 

(2.51) 

696.30 

(3.13) 

771.55 

(1.22) 

763.60 

(4.29) 

1028.00 

(1.60) 

1023.70 

(1.92) 

2183.88 

(3.58) 

2175.40 

(2.04) 

2957.15 

(1.36) 

2974.05 

(3.17) 

4593.42 

(2.76) 

4485.66 

(2.30) 

10368.531 

(9.400) 

10281.198 

(34.700) 

28092.339 

(530.000) 

29219.948 

(65.545) 

38170.042 

(1106.590) 
38728.380 

(611.565) 

MODE/D 
776.23 

(10.66) 

725.20 

(13.63) 

969.67 

(4.06) 

1006.13 

(5.06) 

1165.38 

(8.00) 

1194.82 

(12.79) 

2235.26 

(11.60) 

2229.61 

(10.43) 

2974.87 

(5.20) 

2993.06 

(30.40) 

4705.70 

(9.86) 

4945.76 

(396.00) 

10318.026 

(15.200) 

10322.021 

(120.500) 
28078.323 

(534.000) 

29190.661 

(188.606) 

37996.802 

(1376.961) 

39296.656 

(1031.302) 

MOEA/D 
470.00 

(1.87) 

462.26 

(0.85) 

548.65 

(0.51) 

550.93 

(1.25) 

821.55 

(1.96) 

820.95 

(0.78) 

1976.84 

(15.33) 

1968.98 

(3.36) 

2690.03 

(2.20) 

2684.44 

(15.57) 

4460.04 

(13.16) 

4540.11 

(78.40) 

10125.703 

(23.100) 

10042.813 

(30.100) 

28234.167 

(1534.000) 
28925.906 

(229.296) 

37409.370 

(752.173) 

38877.620 

(1236.215) 

MODE 
485.82 

(5.83) 

479.79 

(7.38) 

558.13 

(1.78) 

560.13 

(0.93) 

830.60 

(2.30) 

828.28 

(1.34) 

1980.41 

(18.90) 

1979.71 

(1.03) 

2709.65 

(3.72) 

2692.38 

(7.73) 

4482.41 

(3.74) 

5119.31 

(785.00) 

10157.042 

(33.700) 

10080.620 

(43.900) 

28252.922 

(571.000) 

29168.776 

(156.315) 

37537.464 

(691.065) 

39141.250 

(1023.600) 

COIN-E 
861.96 

(57.6) 

804.79 

(14.19) 

1135.21 

(2.08) 

1283.90 

(41.59) 

1712.03 

(189.07) 

1452.55 

(93.88) 

3624.32 

(2.28) 

4026.99 

(342.03) 

5284.17 

(7.54) 

5277.26 

(14.77) 

8982.06 

(932.34) 

8839.20 

(916.36) 

17976.80 

(244.38) 

17978.60 

(354.77) 

48216.81 

(528.07) 

51262.03 

(191.84) 

64873.74 

(437.87) 

69877.96 

(824.76) 

Note: The results are shown in terms of mean (standard deviation). The bold and underline element represents the best performance in each criterion and problem set. 
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In order to demonstrate the overall performances of different algorithms based on three problem sizes, 
each metric of six instances of each problem size (S, M and L) is averaged and ranked. The results are shown 

in Table 4. It is obvious that AMOEA/D-DE ranks first for all convergence related metrics, i.e. 𝐺𝐷, 𝐼𝐺𝐷, 

𝑅𝑁𝐷𝑆1 and 𝑅𝑁𝐷𝑆2. Hence, it could be concluded that AMOEA/D-DE should be considered as a viable 
hybrid algorithm for solving many-objective car sequencing problems. In contrast, the poor performance 
algorithms are MODE and COIN-E. For the diversity related metric, MODE and COIN-E seem to be the 
best, whereas AMOEA/D-DE comes third. The algorithms that show the poorest performance on diversity 
are MODE/D and MOEA/D.  
 
Table 4. Overall ranking of different algorithms based on problem sizes. 
 

Algorithm 
Problem Set 

Small Medium Large 

𝑮𝑫 
AMOEA/D-DE 1 1 1 

MODE/D 2 2 2 

MOEA/D 3 3 3 

MODE 4 4 5 

COIN-E 5 5 4 

𝑰𝑮𝑫 
AMOEA/D-DE 1 1 1 

MODE/D 2 2 3 

MOEA/D 3 3 2 

MODE 4 4 5 

COIN-E 5 5 4 

𝑹𝑵𝑫𝑺𝟏  
AMOEA/D-DE 1 1 1 

MODE/D 2 2 2 

MOEA/D 3 3 3 

MODE 4 4 5 

COIN-E 5 5 4 

𝑹𝑵𝑫𝑺𝟐  
AMOEA/D-DE 1 1 1 

MODE/D 2 2 2 

MOEA/D 3 3 3 

MODE 4 4 5 

COIN-E 5 5 4 

Diversity ∆∗ 
AMOEA/D-DE 3 3 3 

MODE/D 4 5 5 

MOEA/D 5 4 4 

MODE 1 2 2 

COIN-E 2 1 1 

CPU time (sec.) 

AMOEA/D-DE 3 3 3 

MODE/D 1 1 1 

MOEA/D 2 2 2 

MODE 4 4 4 

COIN-E 5 5 5 

Note: Number represents the rank of each algorithm. Bold shows the best performing algorithm. Underline 
indicates no significant difference between algorithms at a 95% confidence interval of the mean. 
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To illustrate the evolutionary process of each algorithm on different problem sizes, its metrics are plotted 
against the evolving generations as shown in Figures 2 - 4 for small- to large-sized problems, respectively. It 
is observed that the progressive evolution of AMOEA/D-DE in terms of the convergence-related metrics 
seems not so much different from the others for the small-sized problem. However, for medium- and large-
sized problems, the performance of AMOEA/D-DE becomes apparent. Moreover, the gaps in performance 
differences between AMOEA/D-DE and the others are significantly widened in the large-sized problem. 
For the spread-related metric, MODE and COIN-E clearly outperform the others. However, this metric 
should be considered as a second priority when comparing to the convergence-related metrics since the 
usefulness of the algorithm with a very good spread will be devalued unless it could achieve very good 
convergence at the same time.     
 

 

 

 
 
Fig. 2. Average results of different algorithms on small-sized problems. 
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Fig. 3. Average results of different algorithms on medium-sized problems. 
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Fig. 4. Average results of different algorithms on large-sized problems. 
 

To visualise the distribution of non-dominated solutions on many objectives, the 3D-RadVis Antenna 
recently developed by Ibrahim et al. [25] is employed. This visualised technique is very useful in observing 
relative locations of non-dominated solutions and trade-offs among various objectives due to its ability to 
map M-dimensional objective space to a 3D radial coordinate plot. Figures 5 - 7 depict the 3D-RadVis 
Antenna plots of four tested algorithms on different sizes of problems (S, M and L). It is clear that 
AMOEA/D-DE demonstrates the best convergence, particularly on medium- and large-sized problems since 
most of its non-dominated solutions are located at the bottom of the graphs.   
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Fig. 5. 3D-RadVis antenna plots for problems S1-S6. 
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Fig. 6. 3D-RadVis antenna plots for problems M1-M6. 
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Fig. 7. 3D-RadVis antenna plots for problems L1-L6. 
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7. Concluding Remarks 
 
The CSP in this research is the extension of its original version. 2SAL is assumingly installed in the assembly 
shop rather than 1SAL which more closely resembles the actual operations in practice. However, this new 
environment poses a new challenge to research scholars since a number of additional complex constraints 
needs to be considered. Moreover, many conflicting objectives have to be optimized simultaneously to satisfy 
customer demands, operational requirements, just-in-time production philosophy and workload 
requirements. Most of the objectives are soft which can be violated at a cost. To solve the MaCSP2SAL, the 
AMOEA/D-DE is developed to tackle many-objective combinatorial optimisation problems. The 
performance of AMOEA/D-DE is compared to COIN-E, MODE, MODE/D and MOEA/D under 
various problem characteristics and sizes. It is obvious that AMOEA/D-DE outperforms other algorithms 

in terms of 𝐺𝐷, 𝐼𝐺𝐷, 𝑅𝑁𝐷𝑆1 and 𝑅𝑁𝐷𝑆2. The implication of the results is that the AMOEA/D-DE not only 
could produce a higher number of non-dominated solutions when comparing to the others but its PF is 
mostly overlapped with the approximated true PF. This demonstrates the robustness of AMOEA/D-DE 
where its embedded adaptive mechanism is triggered according to the search trajectory requirement. 
Although AMOEA/D-DE yields the diversity metric poorer than MODE and COIN, it still ranks third best. 
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