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Abstract. In traditional crowd simulation methods, global path planning (GPP) and local collision
avoidance (LCA) were mostly used to advance pedestrians toward their own goals without colliding.
However, we found that using those methods in bidirectional flows can force a pedestrian to get stuck
among the incoming people, walk through the congestion, or even unintentionally occupy in a dense
area, although more comfortable passageway exists. These odd behaviors are usually produced and
simply noticeable in bidirectional case. This paper aims at reducing these artifacts to achieve more
behavioral fidelity, by adding the explicit metabolic-energy-minimal short-term path planning (MEM)
in between GPP and LCA. For energy analysis, the optimal control theory with the objective energy
function from the study of biomechanics was employed, which finally leads to the useful optimal walk-
ing characteristics for the pedestrians. The simulation results show that the pedestrians with MEM can
adapt their moving to avoid the congestion, resulting in more promising lane changing and overtaking
behaviors. Even though MEM was mainly developed to deal with the artifacts in bidirectional flows,
it can be extended with a little modification and can produce significant behavioral improvement for
multi-directional case as shown in the last part of the paper.
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1. Introduction

Crowd simulation is a very important, challenging task in a production pipeline of games, films, and
pedestrian analysis softwares. Behind such pipeline, several issues were taken into consideration with
an intent to achieve high fidelity of behavioral realism, and, with no doubt, one of the most essential
issues is crowd navigation.

In traditional crowd simulation, the global path planning (GPP) and the local collision avoidance
(LCA) have been successively used to advance virtual pedestrians throughout the time. GPP takes
responsibility to provide a set of collision-free paths among static obstacles. Such paths allow each
pedestrian to walk freely between any two particular places in the simulated world, while LCA entirely
copes with preventing collisions between pedestrians and obstacles by offering the sensory information
to pedestrians so that they can dodge the neighbors while walking along the paths taken from GPP.

Simulating with GPP and LCA can produce satisfactory results. However, in case of bidirectional
crowd flow, which can be seen everywhere in real life, for example, at the pavement and corridor, some
autonomous pedestrians overtake the others in an awkward direction, which results in getting stuck
among the incoming people or being in a congested area, even though there is another direction that
could bring them into the more comfortable place. This is due to the lack of the consideration on the
successive avoidance motion, which cannot be found in the GPP and LCA.

Contribution: In this paper, we present a metabolic-energy-minimal short-term path planning tech-
nique (MEM) to deal with such consideration. Our approach begins with the GPP to compute the
collision-free paths amoung the static obstacles, then instead of directly doing the LCA, the MEM will
find the best desired walking direction amoung the predicted walking paths of neighboring pedestrians.
MEM does not consider only the current positions, but also the future. This prevents a pedestrian from
the successive awkward motion. Finally the LCA employs such desired direction to find the actual one
on the condition that the collision with the others should not occur.

The process to find the best desired walking direction inside the MEM comes from the principle of
least effort [1] stating that it is a human nature to want the greatest outcome for the least amount of
work. According to the principle, each virtual pedestrian in our approach is desired to walk on a path
that causes the least amount of energy expenditure. This is definitely consistent with the real world,
for example, people would not walk on a detour if there is a shortcut to the destination, and would not
walk through a congested area if there is a clearer one, because walking either on a detour or through a
congested area is inclined to fatigue people more than on a shortcut or in an open space.

To obtain such energy-minimal walking path, we transform the problem to the constrained opti-
mization problem with the energy calculation based on the biomechanical study of the real human
walking [2], and utilize the optimal control theory as a solver, which results in very useful characteris-
tics of the energy-minimal walking paths in a dynamic environment. However, it is not trivial to find
out the closed form solution to the problem so we present the approximation method which is practical
and simple for implementaion.

Our results show the improvements in crowd navigation in bidirectional flow as shown in Figure 1,
the red pedestrian chose to walk through the moving huge crowd via a clear passageway. This reflects
the intelligence in his navigation. Moreover, our approach can automatically exhibit the lane formation
phenomenon, which is an important behavior usually emerging in real life, and also the more promising
lane changing and overtaking behavior as compared to the previous methods.

Organization: The remainder of this paper is organized as follows. In section 2, the previous work
is surveyed. In section 3, we give an overview of our approach, and detail our MEM in section 4. In
section 5, we demonstrate the simulation results and discuss the efficiency and impact on bidirectional
crowd flow by comparing with the previous methods, and also show the usage of our approach on
multi-directional crowd simulation. We summarize the paper and point out the future work in the last
section.
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Fig. 1. Simulation result generated by our approach. The red-colored pedestrian walks through the
huge crowd split by a bent, narrow passageway. At each time step, he observes his surroundings and
chooses a comfortable way allowing him to reach to the front area.

2. Previous Work

Computer-aided simulation of the creatures’ behaviors dates back to the work of Reynolds [3] who
proposed the model to simulate the movement of the flock of birds. Since then, crowd behaviors have
been extensively studied by the researchers in different disciplines, and the plenty of approaches were
then developed in an effort to imitate the pedestrian navigation, which will be briefly overviewed in
this section.

Global Path Planning (GPP): Dealing with avoiding static obstacles has been much addressed in
the robotics literatures where the robot is treated as an intelligent machine capable of sensing the sur-
roundings and planning the collision-free trajectories. We refer the reader to the valuable book [4] for
the literature review and the useful planning algorithms. Likewise, autonomous pedestrians need to rec-
ognize the simulated world, and plan for a route to the destination. The simple way is to discretize the
simulated world into the single uniform grid and use the well-known A⋆ search algorithm for pathfind-
ing, but it is inefficient for a large-scale environment in terms of computation time and memory used,
so the multi-resolution grids [5] and the hierarchical pathfinding [6, 7] were introduced to enrich the
performance. Owing to the tradeoff between the level of discretization and the performance, using a set
of connected graphs to represent the walkable regions is a good choice to compromise between both of
them. Many researchers construct such graphs based on different approaches, including the randomized
method [8], Delaunay triangulation [9], navigation graph [10], voronoi diagram [11, 12], and medial axis
[13, 14, 15, 16, 17]. The graph-based path planners yield a small-sized search space but the queried path,
if it exists, is not the shortest one as produced in the grid-based planners. Moreover, the graphs can
store additional information of each walkable region, for example, the crowd density [18], to be used as
the heuristic value in the traditional graph search algorithms.

Local Collision Avoidance (LCA): Without neighboring people, an autonomous pedestrian will
walk on a path queried in the GPP, but when others exist and are within close proximity, the pedestrian
needs to dodge to avoid the collision. In cellular automata model [19, 20], preventing collisions is easily
handled, but the behavioral realism must be sacrificed. Rather, the local field-based method [21, 22]
computes the possible pathway on a discretized field centered at the pedestrian’s current location. The
rule-basedmethod [23, 24, 25] uses a collection of predefined rules for pedestrian steering. It produces re-
markable results in case of low-density crowds, but lack realism in high-density because of the ambiguity
of the dominant rule selection. The force-based method [26, 27, 28] in which pedestrians are driven by
repulsive and attractive forces, can reflect the social psychology of the human. However, the oscillation
may occur due to improper weight setting. Instead, the velocity-based method [29, 30, 31] directly com-
putes a set of admissible velocities, using geometric means, and then reasonably picks out one of them
as a new velocity for the pedestrian. Some works [32, 33, 34, 35] enhance the Velocity Obstacles [36]
to construct the better admissible velocity regions, resulting in collision-free, oscillation-free, smooth
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trajectories, and parallel-computing capability. With regard to the realism, the example-based method
[37, 38, 39, 40], psychology-based method [41, 42], and vision-based method [43] steer the pedestrians,
based on the human movement video data, the human psychological factors, and the human visual
perception, respectively. Moreover, the continuum crowds [44] and the fluid-like motion [45] can well
demonstrate the crowd-level interaction between highly densely-packed crowds, where each individual
movement undeniably complies with a group.

Uni- and Bidirectional Crowd Flows: In these situations, the GPP is easily defined due to the
simplicity of static obstacle formation, which diverts the researcher interest to the local interaction
between pedestrians. Some researchers simulate these circumstances using the lattice-gas model [46, 47]
and cellular automata [48, 49, 50] with their own specific rules to determine the lane changing direction
on a uniform grid. Although the rules were developed in different ways, the lane changing direction
depends on the same attributes, including the crowd density and the walking directions of neighboring
pedestrians being in frontal areas. Specifically, these rules will direct the pedestrians to walk on a more
comfortable lane such as a low-density lane or a lane having the same-walking-direction pedestrians. By
the nature of discretization, limiting pedestrian movement to a discrete set produces unrealistic results.
Instead, the counterflow model [51] computes a new desired walking direction, based again on the
crowd density and others’ walking directions, enabling pedestrians in any continuous crowd simulators
to walk toward a more comfortable area. Moreover, the overtaking analysis based explicitly on the
social repulsive forces [52, 53] allows pedestrians to weave their way through a crowd, but the repulsive
forces may cancel each other, causing a pedestrian to get stuck into a moving group in front even though
walkable pathways are available.

The above-mentioned works determine a new walking direction pointing to a more comfortable
lane or area, by considering merely the current state of the neighborings. This does not guarantee the
forthcomingmovements, and often results in strange-looking behaviors, e.g., confronting the oncoming
people, getting stuck into pedestrians in front, or unintentionally being in a dense area, even though
other pathways exist. As we point out, theGPP and LCA do not consider the successive walkingmotion
so the awkward behaviors are supposed to emerge. Recently, the navigational system called the Effective
Avoidance Combination Strategy (EACS) [54] presented a mid-term motion planning technique, like
our MEM, to compute an energy-efficient avoidance path made of successive adaptations. But their
resulting path does not guarantee the minimal energy. It depends on the order of collision testing.

In our approach, the presence of MEM produces different behavioral results, comparing to the pre-
vious methods using only GPP and LCA. Because in GPP and LCA no successive motions will be taken
into account. Although some works exploit crowd density as a heuristic for guiding pedestrian walking,
it is limited to some scenarios, for example, the scenario shown in Figure 1. Using crowd density for
lane changing direction cannot guide the pedestrian to walk on a narrow passageway. Instead, pedestri-
ans in our approach are guided by a collision-free path that yields the minimal energy. Our approach
differs from EACS on the aspect that EACS may not consider some feasible paths because some orders
of collision testing cannot be reachable so some paths may be skipped. But in our approach the energy-
minimal collision-free path is computed from all feasible paths which guarantees that the resulting path
yields the global minimum energy.

3. Overview of Our Approach

Our steering approach assumes that each pedestrian in bidirectional flow is already given the desired
walking direction to one of the exits of the corridor, which can be simply defined by any GPP; for
example, in the graph-based approach, the desired walking direction may be the tangent to a piece-
wise smooth curve at a point a pedestrian is corresponding to. Given the desired walking direction,
the pedestrian then employs the MEM by firstly perceiving nearby people, secondly predicting their
walking paths, and lastly planning for the energy-minimal path that compromises between the walk-
ing energy expended and the distance to destination. The energy-minimal path describes not only the
spatial information but also the temporal one, which serves as the desired velocity at the present time
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Fig. 2. The red pedestrian, who is located at the origin of the reference frame, is desired to walk to-
ward the front line, or the red dashed line, with the lowest walking energy expenditure.

for the considered pedestrian. Finally, the LCA will exploit the desired velocity as an input to com-
pute the actual one in the sense that the pedestrian attempts to walk along the energy-minimal path
simultaneously with preventing collisions with the nearby walkers.

Algorithm 1 shows our simulation loop where the desired walking direction, the desired velocity,
and the actual velocity of the ith pedestrian were represented by d⃗i, v⃗i,des, and v⃗i,act respectively. The
ComputeDesiredWalkingDirGPP function will be called in every time step to allow the pedestrian
to anytime change his mind on the direction towards an exit of the corridor, but in case the direction
is fixed, calling it once is enough. Our main contribution is in finding the energy-minimal path in the
MEM, which performs through the EnergyMinimalPathMEM(·) function and will be detailed in
the next section. The proposed MEM can be seamlessly connected with any previous LCA methods by
using the desired velocity as a connector.

Algorithm 1 Crowd Simulation in Bidirectional Flow
1: while simulating do
2: for each pedestrian i do
3: d⃗i ← ComputeDesiredWalkingDirGPP ()
4: v⃗i,des ← EnergyMinimalPathMEM(d⃗i)
5: v⃗i,act ← LocalCollisionAvoidance(v⃗i,des)
6: UpdatePosition(v⃗i,act)
7: end for
8: end while

4. Metabolic-Energy-Minimal Short-Term Path Planning

Our MEM computes the desired velocity v⃗i,des for each pedestrian on the basis of the principle of least
effort and the biomechanical walking energy. The problem we are dealing with was shown in Figure 2.
Instead of planning a route to the one end of the corridor, the considered pedestrian i, which is depicted
by the red circle in Figure 2, will plan its walking path toward the front line being far away from his
current position with a distance specified by the user. We assume that the pedestrian i is positioned at
the origin of the reference frame x-y and only responses to the perceived people in front.

The future position of the perceived people in front will be predicted by two nuanced ways, subject
to the distance to the pedestrian i. If the distance is below some threshold lth, the future position is
obtained by linearly extrapolating its current velocity, otherwise the projected current velocity onto
the desired walking direction d⃗i of the pedestrian i. The threshold lth is set to 3.66 meters. This is
the maximum distance of the social space [55] where the direct interactions and responses between the
real humans happen. For the people in front beyond the social space (farther than the threshold lth),
prediction by using the projected velocity onto the desired walking direction d⃗i is reasonable enough
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in case of bidirectional crowd flow where two pedestrians have a high tendency to meet each other at
a future time, if extrapolating the current velocity is used instead, the future position at a large time
period may lie outside the corridor and cause no influence on the pedestrian i.

The measurement for the walking energy is solely based on the biomechanical study of the real
human walking [2] in which the oxygen uptake of a subject walking on a treadmill at varying speeds was
recorded, resulting in amathematical equation thatmanifests the relationship between the instantaneous
metabolic energy expenditure and the walking speed, as shown below.

dE

dt
= m(es + ew∥v⃗(t)∥2) (1)

where E is the total metabolic energy measured in joules (J),m is the mass measured in kilograms (kg),
v⃗(t) is the velocity at time t measured in m/s, es and ew are the constants measured in J/kg/s and
Js/kg/m2 respectively, and ∥ · ∥ is the Euclidean norm. The constant es and ew can be viewed as the
rates of the energy expended while standing and walking, respectively. These constants are unique for
each pedestrian, and for the average human, the constant es is equal to 2.23 J/kg/s while the constant
ew is 1.25 Js/kg/m2.

According to Eq. (1), we can compute the total metabolic energy expended by the pedestrian i over
arbitrary time period ∆t by using the following equation.

E = m

∆t∫
(es + ew∥v⃗(t)∥2)dt (2)

The pedestrian iwill plan its walking path from the current time tc to the unknown future time te (time
at which the pedestrian i reaches the front line), so ∆t = te − tc.

4.1. Constrained Optimization Problem

From the principle of least effort [1], the pedestrian i is supposed to walk with the least amount of
energy expenditure. So we compute the desired velocity v⃗i,des(t) for the pedestrian i over time period
[tc, te] such that the total metabolic energy E is minimized:

v⃗i,des(t) = argmin
v⃗i(t)∈V

E (3)

where V is a set of collision-free velocities over time period [tc, te]. Although our objective function is
similar to PLEdestrians [56], they are different in purposes. In PLEdestrians, a desired velocity is given
and the energy-minimal actual velocity is then computed. Refer to Algorithm 1, PLEdestrians addresses
the problem in LocalCollisionAvoidance(·) function.

To define a set of collision-free velocities V , the mathematical representation of the front line and the
perceived people in frontmust bewell established. We ignore the boundary of the corridormomentarily
to examine the energy-minimal walking characteristics of the pedestrian i against the perceived people.
The front line and the jth perceived people at time t are illustrated by the implicit equations f(p⃗) = 0
and wj(p⃗, t) = 0, respectively, where p⃗ is a point (x, y) in the reference frame. The geometric shape of
jth perceived people is defined as a circle with the radius (ri + rj), where ri and rj are the radius of the
considered pedestrian i and jth preceived people. So

wj(p⃗, t) , (rj + ri)
2 − ∥p⃗− p⃗j(t)∥2 (4)

where p⃗j(t) is the position of the jth perceived people at time t. For the future position of the jth
perceived people, we linearly extrapolate its current velocity when the distance to considered pedestrian
i below the threshold lth, otherwise the projected one onto d⃗i, so

p⃗j(t) =

{
p⃗j(tc) + (t− tc)v⃗j(tc), ∥p⃗j(tc)∥ 6 lth
p⃗j(tc) + (t− tc)(v⃗j(tc) · d⃗i)d⃗i, otherwise.

(5)
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With above definition, a velocity v⃗i(t) in a set V must conform to:

˙⃗pi(t) = v⃗i(t)

wj(p⃗i(t), t) ≤ 0, j = 1, ..., N

f(p⃗i(te)) = 0

(6)

where p⃗i(t) is the position of the pedestrian i at time t, and N is the number of perceived people. The
first equation describes the motion of the pedestrian i, the second forces the pedestrian i not to collide
with the perceived people, and the last one ensures that the pedestrian i must reach the front line at
time t = te.

4.2. Metabolic-Energy-Minimal Walking Characteristics

The objective function in Eq.(3) and the constraints in Eq.(6) are investigated to compute v⃗i,des(t) for
t ∈ [tc, te] by using the optimal control theory [57, 58, 59]. The position p⃗i(t) and the velocity v⃗i(t)
are respectively the state and the control variable, which characterized by the pure state inequality con-
straints wj(p⃗i(t), t) ≤ 0 and the free endpoint condition f(p⃗i(te)) = 0. The result of the investigation
provides us the following equations:

a⃗∗i (t) = −
1

mew

N∑
j=1

αj(t)(p⃗
∗
i (t)− p⃗j(t)) (7)

αj(t)wj(p⃗
∗
i (t), t) = 0 and αj(t) ≥ 0 (8)

v⃗∗i (te) = −
1

2mew

γ
∂f

∂p⃗
+

N∑
j=1

βj
∂wj

∂p⃗

∣∣∣∣
p⃗∗i ,te

and γ ∈ R (9)

∥v⃗∗i (te)∥ =

√√√√ es
ew

+
1

mew

N∑
j=1

βj
∂wj

∂t

∣∣∣∣
p⃗∗i ,te

(10)

βjwj(p⃗
∗
i (te), te) = 0 and βj ≥ 0 (11)

where a⃗i(t) is the acceleration of the pedestrian i at time t, and the asterisk means the variable is com-
puted at the optimal point. Eq.(7) and Eq.(8) explain the characteristic of the optimal acceleration that
make the pedestrian i expend the (local) minimal metabolic energy. While Eq.(9) - Eq.(11) tell us about
the optimal velocity v⃗i(t) at time t = te (time at which the pedestrian i touches the front line f ). For
the derivation, please see the appendix A.

The energy-minimal walking characteristics that we can deduce from the equation (7) - (11) are:
Characteristic A.1: For any time period when the pedestrian i walks without touching any perceived

people, he must walk with constant velocity.
Characteristic A.2: For any time period when the pedestrian i touches one of the perceived people; in

other words, walks on a circle boundarywj , the relative velocity must be tangent to the circle, and the relative
speed must be constant throughout the time when he is touching.

A.1 and A.2 result from observing Eq.(7) and Eq.(8). Considering the walking characteristics at
the time period when pedestrian i does not touch any perceived people at the optimal position p⃗∗i (t),
we get wj(p⃗

∗
i (t), t) < 0 and from Eq.(8) we get αj(t) = 0 for all j = 1, ..., N . This results in zero

acceleration a⃗∗i (t) (constant velocity) in Eq.(7) (A.1). Now considering if the pedestrian i touches the
jth perceived people (walk on a circle boundary wj), we get wj(p⃗

∗
i (t), t) = 0 and then αj(t) ≥ 0. If

αj(t) = 0, a⃗∗i (t) = 0 and its velocity is constant. But the pedestrian i is assumed to walk on the circle
boundary wj in this period of time so this case cannot happen, forcing αj(t) > 0. When αj(t) > 0,
the direction of a⃗∗i (t) will point to the center of the circle wj due to the term p⃗j(t)− p⃗∗i (t). Note that
the velocity of the jth perceived people is constant as explained in Eq.(5), so a⃗∗i (t) can be viewed as a
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relative acceleration of the pedestrian i against the jth perceived people, and since its direction points
to the center, the pedestrian i will undergo the uniform circular motion on this period, and this results
to A.2.

Characteristic B.1: At the time te (when the pedestrian i reaches the front line f ), if he does not simul-
taneously touch any perceived people, his velocity at that time must be perpendicular to the front line f , and
his speed must be equal to

√
es/ew.

Characteristic B.2: At the time te (when the pedestrian i reaches the front line f ), if he simultaneously
touches one of the perceived people, his velocity at that time depends on his state at the time before he reaches
the front line f .

B.1 and B.2 are the consequence of observing the boundary conditions at time te, as shown in Eq.(9)
- Eq.(11). If the pedestrian i reaches the front line without touching any perceived people at time te, we
obtain wj(p⃗

∗
i (te), te) < 0 and then βj = 0 for all j = 1, ..., N in Eq.(11). Therefore, the velocity v⃗∗i (te)

in Eq.(9) must be parallel to the gradient of f (the normal of the front line f ) at the position p⃗∗(te), and
its magnitude must be equal to

√
es/ew as depicted in Eq.(10). This results to B.1. In case he touches

one of the perceived people at the time te, so wj(p⃗
∗
i (te), te) = 0 and βj ≥ 0, which gives v⃗∗i (te) the

additional dependency on the gradient of wj (the normal of the circle boundary wj). As the position
p⃗∗i (t) and the velocity v⃗∗i (t) are continuous for all time t ∈ [tc, te], and p⃗∗i (te) lies on the circle boundary
wj , if the position before he reaches the front line f , denoted by p⃗∗i (te − ϵ) where ϵ is a small positive
infinitesimal quantity, does not touch any circle boundary, the velocity v⃗∗i (te) will be characterized by
A.1. But if p⃗∗i (te − ϵ) lies on a circle boundary wj , A.2 tells us that he is moving in a uniform circular
motion at that time and keeps doing this until the time te, so the velocity v⃗∗i (te) will be characterized
by A.2.

Characteristic C.1: If there is no perceived people, the pedestrian imust walk straight with the constant
speed

√
es/ew in the direction that is perpendicular to the front line f .

Characteristic C.2: If all perceived people stand still, the pedestrian i must walk with constant speed√
es/ew throughout the time along the shortest path towards the front line.
C.1 and C.2 explain the walking characteristics in special scenarios. C.1 simply deduces from A.1

and B.1, while C.2 from A.1, A.2, and Eq.(10) with the removal of the time derivatives of all wj . Notice
that the walking speed formula

√
es/ew matches the most efficient walking speed of the average human

studied in the biomechanics [2],
√
2.23/1.25 = 1.34 m/s.

4.3. Near-Global Optimal Solution

A velocity v⃗∗i (t) that conforms to the above walking characteristics is the local optimal solution to
the problem. To find the global one, all possible v⃗∗i (t) need to be given but calculating each velocity
v⃗∗i (t) analytically is not trivial because the transition at a point between A.1 and A.2 is restricted to be
continuous. So we present the approximation method by replacing a circle wj with two perpendicular
lines, one is parallel to the x-axis of the reference frame, which we called a horizontal line, while the
other one is parallel to the y-axis, called a vertical line. The intersection point of these lines is at the
center of a circle wj , and the endpoints of each line are at the middle between the corners of the inner
and outer rectangles as shown in Figure 3. When the pedestrian i touches the jth perceived people
in a period of time (A.2), he will walk between these endpoints instead of the circle boundary. If the
endpoints are at the corners of the inner rectangle in Figure 3(b), the pedestrian i will think that he can
walk through two adjacent perceived people, but actually he cannot. If the endpoints are at the corners
of the outer rectangle, he will think that he cannot walk through, but actually he can. To compromise
these situations, we choose to use the middle points instead.

With this approximation, the energy-minimal paths that conforms to the aforementioned walking
characteristics turn out to be piecewise linear curves (a connected sequence of line segments) in space-
time coordinate system of the pedestrian i as shown in Figure 4. We define without loss of generality
that the state at time t = tc happens at t = 0 in this space-time coordinate, and the current position
of the pedestrian i is (x, y, t) = 0⃗. The horizontal and vertical lines generate two perpendicular planar
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(a) (b)

Fig. 3. Replacing the circle wj of the jth perceived people (a) with two perpendicular lines (b), called
horizontal and vertical lines. While the pedestrian i touches the jth perceived people (A.2), he will
walk between the endpoints of lines instead of the circle boundary.

strips. The front line f creates a plane parallel to the time axis, as shown in Figure 4(b).
To find the energy-minimal path, the time axis will be discretized into levels according to the user-

defined sampling time∆tsamp and the maximum time tmax (Figure 4(c)). At each level, the endpoints of
the horizontal and vertical lines are defined as the critical points, which perform as the transition points
between A.1 and A.2. For the level t = 0, there is only one critical point locating at the origin (0⃗).
Instead of naively searching the energy-minimal path from the critical point at t = 0 to the plane f ,
we use the dynamic programming technique by finding the energy-minimal path starting at the critical
points on the top-most level (t = tmax), and then the critical points on the lower level, until the critical
point 0⃗ is reached.

For each critical point being examined, two types of line segments must be considered, based on the
energy-minimal walking characteristics; (1) a

√
es/ew-slope line segment from the critical point being

examined to the closest point on the plane f (B.1), and (2) a line segment from the critical point being
examined to the critical points on the higher levels (A.1 and A.2). A line segment will be selected as
a candidate for constituting the energy-minimal path if no collision with the perceived people occurs,
and thanks to each planar strip, the collision detection is very simple by checking only line-plane in-
tersection. If the latest-examined line segment and its successor promote the lowest energy, such line
segment and its successor will be stored at the critical point being examined, and they will be used as
a successor for the critical points on the lower level. If the critical point 0⃗ is examined and there is no
connected sequence of line segments from the critical point 0⃗ to the plane f , the pedestrian i will be
given the desired velocity

√
es/ewd⃗i, but if there is a sequence (Figure 4(d)), the desired velocity will be

computed from the first line segment (line attached to the critical point 0⃗) by the following equation:

v⃗i,des(tc) = (−→cp1 −−→cp0)xy/(
−→cp1 −−→cp0)t (12)

where −→cp1 and −→cp0(= 0⃗) are the critical points that constitute the first line segment.

4.4. Line Segment Pruning

To improve computational performance, line segments that agree with the following conditions will
be pruned before checking the line-plane intersection: (1) one of the critical points at the end of a
line segment lies inside a circle wj , (2) the speed computed from the slope of a line segment exceeds the
maximum speed of the pedestrian i, (3) a part of a line segment lies outside the corridor, (4) the successor
of a line segment does not reach the plane f , (5) a line segment and its successor produce more energy
than the previously-examined one, (6) in case the pedestrian i is restricted to plan his walking path only
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Fig. 4. Near-global energy-minimal velocity. (a) Pedestrian i perceived two people in front. The fu-
ture position of the outside-lth-zone pedestrian is predicted by extrapolating its projected velocity,
and extrapolating the current velocity for the inside one. (b) Horizontal and vertical lines of each per-
ceived people generate two perpendicular planar strips, and the front line f creates a plane in space-
time coordinate system. (c) The sampling time and maximum time are defined to discretize the time
axis into levels to construct critical points. (d) The energy-minimal velocity is computed from v⃗∗i ob-
tained by the dynamic programming technique with the knowledge of the energy-minimal walking
characteristics.

in the forward direction (the positive direction of the y-axis), a line segment that points to the negative
direction of the y-axis will be pruned.

Moreover, if we found a
√

es/ew-slope line segment from a critical point being examined to the
closest point on the plane f , we can discard the line segments between levels since the

√
es/ew-slope

line segment produces the most minimal walking energy from the critical point being examined.

4.5. The Constant es, ew, and tmax

As pedestrians walk at different preferred speed due to their own physiological attributes, for examples,
a tall man naturally walks faster than a short one, we handle this diversity in our crowd simulation by
setting the constant es and ew for each virtual pedestrian on the assumption that virtual pedestrians
expend the same amount of metabolic energy while standing but different while walking. That is:

es = 2.23

ew = es/v
2
pref

(13)
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where vpref is the preferred speed of a virtual pedestrian. The above assumption comes from the situation
when a tall and a short man are at the same position and would like to walk to the same location on
the condition that they must reach that location at the same time. The tall man naturally walks faster
than the short one by his preferred speed, making the tall man expend the lowest energy, whereas the
short one must accelerate himself to pursue the tall man, making the short man walk with higher speed
than he prefers, so the short man must spend more energy while walking (ew) for the instantaneous
acceleration, and this conduces to Eq.(13).

For the time tmax, it should be equal to or greater than the time te to secure the energy-minimal
walking path towards the front line f , however, the time te cannot be known in advance. Nevertheless,
tmax must be greater than the time te in the situation when the pedestrian iwalks without the perceived
people in front (C.1), so the lower bound for tmax is c

√
ew/es, where c is the minimum distance to

the front line f . For the upper bound, we define it from the situation when the pedestrian i is closely
obstructed by all perceived people which horizontally-packed into a single row, so the pedestrian i
must walk to the left or right to avoid the perceived people before walking straight to the front line f .
Therefore,

c

√
ew
es
≤ tmax ≤

(
(largestrj + ri)N + c

)√ew
es

(14)

where largestrj is the largest radius among the radii of the perceived people.

5. Results and Discussion

In this section, we will show the results through a set of scenarios, and discuss the efficiency by com-
paring with the previous work and the real-world bidirectional crowd flow. We implemented our work
in C++ and used OpenGL for visualization on a 64-bit machine with 8GB of RAM, an Intel i7-2600
3.40GHz processor, and with the NVIDIA Geforce GTX 550 Ti. All simulation results are demon-
strated in the companion video.

Lane Changing and Overtaking Behavior: The first scenario was shown in Figure 5(a) where the
red and yellow pedestrians are walking upward with the desired speed 1.5 m/s and 0.5 m/s respectively,
and the three green pedestrians are walking downward with 1.3 m/s. The initial position of the red
pedestrian slants a bit to the right side of the yellow one. We compare our method with the social force
model, the velocity-based PLEdestrians, and the counterflow model. Since the original social force and
the velocity-based models allow the simulated pedestrians to perceive the people in back, causing the
people in front to be pushed and/or sidestep, these behaviors should not occur in normal situation of
bidirectional crowd flow so wemodified by restricting the visual angle to 180 degrees. For our approach,
the front line f is set to be a straight line y− c where c is the planning distance. In this scenario, we set
c = 7m and the perception radius is equal to c. The tmax is set to the halfway between the lower and
upper bound defined in Eq.(14), and the ∆tsamp = 0.25s.

The results show that If the group of green people does not exist, the red pedestrian in all methods
will overtakes the yellow on the right-handed side, but when the green exists, the red pedestrian in
the social force model, the PLEdestrians, and the counterflow model still tries to overtake the yellow
on the right-handed side and eventually get into trouble among the green people. This is because in
the social force and PLEdestrians, the desired velocity was fixed, which always points to the one end
of the corridor, and the resulting walking direction was computed based on the simple actions like
walking right when someone being left, which produces the awkward results as shown in Figure 5(b)
and 5(c). Although in the counterflow model the desired velocity was recomputed in every timestep, it
was obtained in a greedy fashion by considering only the present states of the perceived people occupying
in three overlapped front areas, and choosing a predefined walking direction towards a lowest-cost area.
This still exhibits an awkward behavior as shown in Figure 5(d). In our MEM (Figure 5(e) and 5(f)), the
red pedestrian still tries to overtake the yellow on the right-handed side but when he perceives the green
ones, he changes his direction to the left to reach more comfortable area.
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(a) Initial (b) Social
Force (SFM)

(c) PLEdes-
trians

(d) Coun-
terflow
Model

(e) Ours +
SFM

(f) Ours +
PLEdestrians

Fig. 5. From the initial (a), the red pedestrian in the social force model (b), PLEdestrians (c) and
Counterflow model (d) walks towards the people in front in an uncomfortable manner by approach-
ing to the incoming pedestrians although the left area is available. However, the red pedestrian with
our MEM ((e) and (f)) can pass through the crowd on the left area, which is collision-free and more
comfortable.

The second scenario was shown in Figure 6. The red, blue, and yellow pedestrians are walking
upward with desired speed 2.0 m/s, 1.3 m/s, and 0.5 m/s, respectively, and the green ones are walking
downward with 1.3 m/s. The front line f , tmax, and ∆tsamp for the red pedestrian are identical to the
previous scenario except that c = 10m. The results show that with the social force model (Figure
6(b)) the red pedestrian walked straight towards the group of green people and then was pushed back
before escaping to the left, whereas with the PLEdestrians (Figure 6(c)) and the counterflow model
(Figure 6(d)), the red pedestrian immediately turned his walking direction to the left when he perceived
the green but he afterwards got stuck between the two slow yellow pedestrians. This was due to the
opposed influences produced by each yellow pedestrian. If perceiving the people in back is allowed, the
two yellow pedestrians will either be pushed or sidestep so that the red one can walk through, which
should not be occurred since the adjacent lanes/areas are available.

With our MEM, the red pedestrian walks to the left to avoid the incoming green people, and then
overtakes the yellow on the left and finally the blue people on the right, as shown in Figure 6(e) and
6(f). In case the desired speed of the red pedestrian decreases from 2.0 m/s to 1.3 m/s, he still avoids the
incoming green people in the same direction as before, but this time he chooses to overtake the yellow
on the right, as shown in Figure 6(g), because this path is collision-free, shortest, and energy-minimal
for the desired speed 1.3 m/s. On the other hand, when the desired speed increases to 3.0 m/s, he walks
straight towards the incoming green people and passes through the crowds via a collision-free gap as
shown in Figure 6(h). These behavioral varieties reflect the intelligence in his navigation.

Mimick the Real-World Bidirectional Flow: We also mimicked the real-world bidirectional crowd
flow by using our MEM along with the PLEdestrians for LCA, as shown in Figure 7 where the top
rows show the image sequence from the video footage of bidirectional crowd flow, and the bottom rows
show our mimicking results. Each simulated pedestrian has its own front line f with different planning
distance c, and the tmax and ∆tsamp are identical to the previous scenarios. After setting and tuning for
c, the simulated pedestrians performed in the same manner as ones in the captured video, which can be
seen from the movement of the rectangle-marked pedestrian in Figure 7(a) who runs fast in an upward
direction (left column), then slows down for the expected gap (middle column), and finally accelerates
to overtake the front people (right column), as well as the movement of the marked pedestrian in Figure
7(b) who walked fast (left column), then overtakes the people in front on the right (middle column),
and finally goes through the crowd to the left (right column).

Lane Formation: One important phenomenon that inherently occurs in bidirectional crowd flow
is lane formation. We conduct the experiment to observe this capability in our approach by placing a
group of approximately one hundred pedestrians at each one end of the 13-meter-width corridor. The
simulated pedestrians are placed randomly in the group and prefer to walk to the opposite side at the
desired speed 1.3 m/s. The planning distance c and the perception radius are set to 6 meters for all
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(a) Initial (b) Social Force (SFM) (c) PLEdestrians (d) Counterflow Model

(e) Ours + SFM (f) Ours + PLEdestri-
ans

(g) Ours + PLEdes-
trians (lower desired
speed)

(h) Ours + PLEdes-
trians (higher desired
speed)

Fig. 6. From the initial (a), the red pedestrian in the social force model (b) approached to the incom-
ing people and then was pushed back by the green pedestrians before escaping to the left, while in the
PLEdestrians (c) and counterflow model (d) the red pedestrian got stuck between two yellow people.
However, when equipped with our MEM ((e) - (h)), the red pedestrian can comfortably pass through
the crowd on different energy-minimal paths depending on his desired speed.

(a) (b)

Fig. 7. Mimicking the real-world bidirectional crowd flows. The top row shows the image sequence
(from left to right) of the real-world bidirectional flow, while the bottom row shows the simulation
result generated by our approach. (a) The marked pedestrian runs towards the crowd with high speed
(left column), then slows down (middle column), and finally overtakes the people in front (right col-
umn). (b) The marked pedestrian walks towards the crowd (left column), then overtakes the people in
front on the right (middle column), and finally goes through to the left (right column).
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Fig. 8. Lane formation simulation from a group of approximately one hundred pedestrians at each
one end of the 13-meter-width corridor. The simulated pedestrians are placed randomly in the group
and prefer to walk to the opposite side at the desired speed 1.3 m/s.

pedesrians. The simulation result shows that after two groups meet each other around the middle of
the corridor, the simulated pedestrians form 7 lanes as shown in Figure 8. If we use longer planning
distance c, the lanes are formed faster. The lane formation was made in order to decrease the overall
walking energy of the pedestrians, because following the people in front to reach the front line produces
lower energy than facing the incoming people.

Fundamental Diagrams of Traffic Flow: We also quantitatively examine our approach in bidi-
rectional crowd flows through the fundamental diagrams. The simulated pedestrians with the desired
speed in a range from 1.3 m/s to 1.7 m/s are placed randomly in the 3m-wide and 15m-long corridor.
The number of the pedestrians walking towards the right end of the corridor is equal to one towards the
left end. If a pedestrian reaches to the one end, he will show up at the opposite and starts walking again.
The tmax is set to be halfway between the lower and the upper bound defined in Eq.(14),∆tsamp = 0.25s,
and the planning distance c is 3.66 m for all pedestrians. To obtain the fundamental diagrams, we mea-
sure the average speed v̄ and crowd density ρ in three areas locating at the middle and the ends of the
corridor. Given v̄ and ρ, the specific flow Js is computed by using hydrodynamic relation Js = ρv̄.

The flowwill be examined at different numbers of pedestrians ranging from 10 to 120 people (equiv-
alently to 0.37 m2 to 4.50 m2 maximum occupation area for a single pedestrian). The crowd density and
the average speed in each area will be measured every frame and averaged over a second interval. After
running the simulation, the fundamental diagrams are obtained as shown in Figure 9. Notice that in
case of 10 people (4.50 m2/ppl) and 20 people (2.25 m2/ppl), the walking speed of the pedestrians clings
around the desired speed (1.3 m/s - 1.7 m/s) throughout the simulation time, but in case of 30 people
(1.50 m2/ppl) it sometimes a bit decreases due to higher population. When the number of pedestrians
increases to 60, or the maximum occupation area per pedestrian reduces to 0.75 m2, the walking speeds
spread widely over the range from approximately 0.3 m/s to 1.6 m/s in a linearly-decreasing pattern as
the density increases. This distribution results from dissolving the congestion into the free flow lanes.
However, in a highly-dense crowd as demonstrated by the cases of 90 people (0.50 m2/ppl) and 120 peo-
ple (0.37 m2/ppl), the free flow lanes are hardly constructed, which makes the pedestrians walk most
of the time at the speeds ranging from approximately 0.15 m/s to 0.5 m/s. Given the specific flow, the
relationship between the specific flow and the crowd density is shown in Figure 9(b), while the specific
flow and the average speed shown in Figure 9(c). These diagrams have similar trend to the empirical
data of bidirectional crowd flow [60] and the traffic flow theory [61].

Computation Time: The number of critical points, which depends on the user-defined parameters
and the number of the perceived pedestrians, obviously has a great impact on the overall simulation time.
To show the trend of the computation time on our approach, we measure the average time consumption
in the situation when the pedestrians are randomly populated with different densities over the 3m-wide
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Fig. 9. The fundamental diagrams of bidirectional crowd flows generated by our approach.

and 15m-long corridor. The desired speed for each pedestrian is randomly set in a range from 1.3 m/s
to 1.7 m/s. At a certain population density, three different setting for the user-defined parameters: (1)
c = 3.66 m, ∆tsamp = 0.25 s, (2) c = 3.66 m, ∆tsamp = 0.50 s, and (3) c = 5.00 m, ∆tsamp = 0.25 s,
will be used for the quantitative comparison.

After measuring at 12 population densities ranging from 0.2 ppl/m2 to 2.66 ppl/m2, the trend of
the average computation times has been produced as shown in Figure 10. It is not surprising that at a
certain population density the average computation time increases as the planning distance c increases
and/or the sampling time∆tsamp decreases because the increase of c and/or the decrease of∆tsamp cause
the higher number of critical points. However, when observing their margins, the average computation
times in all three settings are not significantly different at the population densities below 1 ppl/m2, but
dramatically expand at the higher population densities. If the long planning distance c with the precise
time sampling ∆tsamp is used, the computation time must be expensive in high-density crowds. This is
the limitation of our approach if the real-time computation for the dense crowds is required.

Multi-Directional Crowd Simulation: Our approach can be used in multi-directional crowd simu-
lation with a little modification. In bidirectional crowd flow, the pedestrian i is desired to walk towards
the front line f but in multi-directional case the pedestrian i is desired to walk towards a circle with
the radius specified by the user. The circle is centered at the pedestrian i’s goal position. Figure 11
shows our simulation result in the scenario when two pedestrians try to walk across a flow of crowds.
Pedestrians in the flow walk to the right with the same speed 1.3 m/s while two red pedestrians would
like to walk to their own goals which located in the other side of the flow. Red pedestrian has a desired
speed 2.0 m/s. The result shows that the red pedestrians can pass through the flow via the two tunnels

ENGINEERING JOURNAL Volume 23 Issue 2, ISSN 0125-8281 (http://www.engj.org/) 37



DOI:10.4186/ej.2019.23.2.23

0 0.5 1 1.5 2 2.5
0

25

50

75

100

125

150

Population Density (ppl/m2)

T
im

e 
(m

s)

 

 

c = 3.66 m, ∆tsamp = 0.25 s

c = 3.66 m, ∆tsamp = 0.50 s

c = 5.00 m, ∆tsamp = 0.25 s

Fig. 10. The average computation time of our approach in three different setting at different popula-
tion densities.

that are marked with the red-colored rectangles.
In the other example as shown in Figure 12, pedestrians with the desired speeds ranging from 1.0m/s

to 1.4 m/s are placed at two circle boundaries (Figure 12(a)), and the goal position for each pedestrian
is located at the opposite. At frame 725 (∼12 seconds), the pedestrians in the social force model (Figure
12(b)), PLEdestrians (Figure 12(c)), and ORCA (Figure 12(d)) are mostly packed at the center, but when
equipped with our MEM, the pedestrians are scattered and some of them almost reach to their own
goal positions. This is because the pedestrians with our MEM respond to the others in an early time of
simulation by planning the collision-free, comfortable paths towards their goals.

6. Conclusion and Future Work

The short-term path planning based on the principle of least effort with the energy calculation using
the metabolic energy equation of the real human walking was proposed. The technique can be seam-
lessly integrated with previous local collision avoidance methods, which allows the virtual pedestrians
in bidirectional crowd flows to walk on energy-minimal paths. This results in more promising overtak-
ing behavior and more reasonable lane changing direction, and in addition can achieve lane formation
phenomenon and also generate the same trend of the fundamental diagrams as ones in the empirical data
and the traffic flow theory. To obtain energy-minimal paths, we formulate the problem as the optimiza-
tion problem and employ the optimal control theory with the dynamic programming as a solver. The
algorithm can perform well in low-to-medium population density but yields the expensive computation
in dense crowds. Also, our approach can be used for multi-directional crowd simulation with a little
modification. For the future work, we plan to reduce the computational burden by finding the heuristic
to determine when our MEM should operate, and the efficient method for adaptive planning distance
c.
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Fig. 11. Image sequence (from top to bottom) of two red pedestrians walking upward against a flow
of crowds by using our approach. The red pedestrians can walk through the flow via the two tunnels
marked by the red-colored rectangles.

(a) Initial (b) Social Force (SFM) (c) PLEdestrians (d) Optimal Reciprocal Col-
lision Avoidance (ORCA)

(e) Ours + SFM (f) Ours + PLEdestrians (g) Ours + ORCA

Fig. 12. Multi-directional crowd simulation. The pedestrians are placed at two circle boundaries. At
frame 725 (∼12 seconds), the pedestrians in the social force model (b), PLEdestrians (c), and ORCA
(d) are mostly packed at the center, but when equipped with our MEM ((e) - (g)), the pedestrians are
scattered, and some of them almost reach to their own goal positions
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Appendix A Derivation of Energy-Minimal Walking Characteristics

A.1 Optimization Problem

Our optimization problem begins with minimizing the objective function in the integral form as shown
in the following equation:

E =

∫ t1

t0

g(t, p⃗(t), v⃗(t))dt, (15)

where p⃗ ∈ Rm and v⃗ ∈ Rn are called the state and control variables, respectively, and g(·) is a real-
valued function. When the values of the control variables v⃗ change, the values of the state variables p⃗
will be changed simultaneously by this differential equation:

˙⃗p(t) = h⃗(t, p⃗(t), v⃗(t)), (16)

where h⃗(·) is arbitrary vector function that has the same dimension as p⃗. The state p⃗(t) is also con-
strained by the N inequality equations:

wj(p⃗(t), t) ≤ 0, j = 1, ..., N (17)

for all t ∈ [t0, t1], and one endpoint constraint:

f(p⃗(t1)) = 0. (18)

The function wj and f are the real-valued functions. We assume that all functions are continuously
differentiable with respect to their own independent arguments. Notice that the control function v⃗(t)
influences the functional E directly by its own values and indirectly by its impact on the state function
p⃗(t) in Eq.(16). Moreover, in our problem, the initial point of the state p⃗(t) is fixed in both space and
time, and can be computed in advance. That is:

t0 and p⃗(t0) are fixed to the known values.

A.2 Necessary Conditions for Optimality

To find the optimal trajectory (t, p⃗∗(t), v⃗∗(t)), we first eliminate Eq.(16) by appending it into the func-
tional E with the Lagrange multiplier vector function λ⃗(t), which results in:

E =

∫ t1

t0

g(t, p⃗(t), v⃗(t)) + λ⃗(t) · (⃗h(t, p⃗(t), v⃗(t))− ˙⃗p(t))dt, (19)

where the Lagrange multiplier λ⃗(t) ∈ Rm can be arbitrary vector function. Then, we expand the
product term and apply the integration by parts, so Eq.(19) turns out to be:

E =

∫ t1

t0

(
g + λ⃗ · h⃗+

˙⃗
λ · p⃗

)
dt+ λ⃗(t0) · p⃗(t0)− λ⃗(t1) · p⃗(t1), (20)

Note that we discard the arguments of the functions in the integral just because of the limited space and
for the clear explanation. Please remember that such functions still depend on their own independent
variables that are previously displayed. We assume that the optimal trajectory (t, p⃗∗(t), v⃗∗(t)) over time
period [t0, t1] produces the minimum functionalE∗ within some neighborhoodsE, so from Eq.(20) we
obtain:

E∗ =

∫ t1

t0

(
g∗ + λ⃗ · h⃗∗ + ˙⃗

λ · p⃗∗
)
dt+ λ⃗(t0) · p⃗∗(t0)− λ⃗(t1) · p⃗∗(t1), (21)

where the asterisk in the superscript means the function is evaluated at the optimal trajectory (t, p⃗∗(t),
v⃗∗(t)).
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For the neighborhoods of (t, p⃗∗(t), v⃗∗(t)), if trajectories (t, p⃗(t), v⃗(t)) for t ∈ [t0, t1 + δt1] are its
neighborhoods, they must produce higher or equal functional E to the minimum functional E∗. Note
that the state at the endpoint in our case is free in both space and time, so the time of the endpoint of
neighboring trajectories can be shifted and this is the reasonwhy the upperboundmust be t1+δt1, where
δt1 is a small infinitesimal quantity. From Eq.(19), the functional E produced by the neighborhoods (t,
p⃗(t), v⃗(t)) can be computed by:

E =

∫ t1+δt1

t0

(
g + λ⃗ · h⃗− λ⃗ · ˙⃗p

)
dt. (22)

Rewrite Eq.(22) by splitting the integral at time t1 into two separate terms, so

E =

∫ t1

t0

(
g + λ⃗ · h⃗− λ⃗ · ˙⃗p

)
dt+

∫ t1+δt1

t1

(
g + λ⃗ · h⃗− λ⃗ · ˙⃗p

)
dt. (23)

The first integral term on the right side of Eq.(23) is the same form as one in Eq.(19), so it can be replaced
with the right side of Eq.(20). Therefore,

E =

∫ t1

t0

(
g + λ⃗ · h⃗+

˙⃗
λ · p⃗

)
dt+ λ⃗(t0) · p⃗(t0)− λ⃗(t1) · p⃗(t1)

+

∫ t1+δt1

t1

(
g + λ⃗ · h⃗− λ⃗ · ˙⃗p

)
dt.

(24)

Consider the last integral term in Eq.(24), it can be approximated by:∫ t1+δt1

t1

(
g + λ⃗ · h⃗− λ⃗ · ˙⃗p

)
dt ≈

(
g + λ⃗ · h⃗− λ⃗ · ˙⃗p

)∣∣∣∣
t1

δt1

= g|t=t1δt1

≈
(
g∗ +

∂g∗

∂p⃗
·∆p⃗+

∂g∗

∂v⃗
·∆v⃗ +R∗

2

)∣∣∣∣
t=t1

δt1

≈ g∗|t=t1δt1

(25)

where∆p⃗(t) = p⃗(t)− p⃗∗(t),∆v⃗(t) = v⃗(t)− v⃗∗(t), and R∗
2 is the remainder. The second line in Eq.(25)

is from eliminating the last two terms in the first line. This was due to the equality constraint specified
in Eq.(16). The third line results from applying the Taylor series expansion to the function g about
the optimal trajectory (t, p⃗∗(t), v⃗∗(t)). The term ∆p⃗δt1, ∆v⃗δt1, and R∗

2δt1 are very small, so they are
eliminated, and the approximation ends in the last line. Therefore, Eq.(24) becomes:

E =

∫ t1

t0

(
g + λ⃗ · h⃗+

˙⃗
λ · p⃗

)
dt+ λ⃗(t0) · p⃗(t0)− λ⃗(t1) · p⃗(t1)

+ g∗|t=t1δt1

(26)

Since the functional E∗ is a local minima within some neighborhood E, which is expressed by Eq.(26),
so we get

E − E∗ ≥ 0. (27)
Consider E − E∗ from Eq.(21) and Eq.(26),

E − E∗ ,
∫ t1

t0

(
(g − g∗) + λ⃗ · (⃗h− h⃗∗) +

˙⃗
λ · (p⃗− p⃗∗)

)
dt

+ λ⃗(t0) ·
(
p⃗(t0)− p⃗∗(t0)

)
− λ⃗(t1) ·

(
p⃗(t1)− p⃗∗(t1)

)
+ g∗|t=t1δt1.
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Then, we use the Taylor series expansion on the terms g − g∗ and h⃗− h⃗∗, and change p⃗− p⃗∗ to ∆p⃗.

E − E∗ ,
∫ t1

t0

{(
∂g∗

∂p⃗
·∆p⃗+

∂g∗

∂v⃗
·∆v⃗

)

+
m∑
i=1

λi

(
∂h∗i
∂p⃗
·∆p⃗+

∂h∗i
∂v⃗
·∆v⃗

)
+

˙⃗
λ ·∆p⃗

}
dt

+ λ⃗(t0) ·∆p⃗(t0)− λ⃗(t1) ·∆p⃗(t1)

+ g∗|t=t1δt1,

(28)

where λi is the ith component of the Lagrange multiplier vector function λ⃗, and hi is the ith component
of the vector function h⃗. As the state at initial point, the state at time t0, in our case is fixed in both
space and time, so ∆p⃗(t0) = 0, and Eq.(28) becomes:

E − E∗ ,
∫ t1

t0

{(
∂g∗

∂p⃗
·∆p⃗+

∂g∗

∂v⃗
·∆v⃗

)

+
m∑
i=1

λi

(
∂h∗i
∂p⃗
·∆p⃗+

∂h∗i
∂v⃗
·∆v⃗

)
+

˙⃗
λ ·∆p⃗

}
dt

− λ⃗(t1) ·∆p⃗(t1) + g∗|t=t1δt1.

(29)

Let δp⃗1 be the difference between the endpoint of the optimal state p⃗∗, which ends at the time t1, and the
endpoint of the neighborhood p⃗, which ends at the time t1+δt1. Specifically, δp⃗1 = p⃗(t1+δt1)−p⃗∗(t1).
So ∆p⃗(t1) can be approximated by:

∆p⃗(t1) ≈ δp⃗1 − ˙⃗p∗(t1)δt1. (30)

Replacing it in Eq.(29) results in:

E − E∗ ,
∫ t1

t0

{(
∂g∗

∂p⃗
·∆p⃗+

∂g∗

∂v⃗
·∆v⃗

)

+

m∑
i=1

λi

(
∂h∗i
∂p⃗
·∆p⃗+

∂h∗i
∂v⃗
·∆v⃗

)
+

˙⃗
λ ·∆p⃗

}
dt

+

(
g∗|t=t1 + λ⃗(t1) · ˙⃗p∗(t1)

)
δt1 − λ⃗(t1) · δp⃗1.

(31)

Rearrange terms in the integrand in Eq.(31), so we get:

E − E∗ ,
∫ t1

t0

{(
∂g∗

∂p⃗
+

m∑
i=1

λi
∂h∗i
∂p⃗

+
˙⃗
λ

)
·∆p⃗

+

(
∂g∗

∂v⃗
+

m∑
i=1

λi
∂h∗i
∂v⃗

)
·∆v⃗

}
dt

+

(
g∗|t=t1 + λ⃗(t1) · ˙⃗p∗(t1)

)
δt1 − λ⃗(t1) · δp⃗1.

(32)

Let H(t, p⃗(t), v⃗(t), λ⃗(t)) = g + λ⃗ · h⃗, which is called the Hamiltonian. So Eq.(32) turns out to be:

E − E∗ ,
∫ t1

t0

{(
∂H∗

∂p⃗
+

˙⃗
λ

)
·∆p⃗+

(
∂H∗

∂v⃗

)
·∆v⃗

}
dt

+

(
H∗|t=t1

)
δt1 − λ⃗(t1) · δp⃗1.

(33)
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From Eq.(27) and Eq.(33), the optimal trajectory (t, p⃗∗, v⃗∗) which produces the local minimum func-
tional E∗ must satisfy the following equation:∫ t1

t0

{(
∂H∗

∂p⃗
+

˙⃗
λ

)
·∆p⃗+

(
∂H∗

∂v⃗

)
·∆v⃗

}
dt

+

(
H∗|t=t1

)
δt1 − λ⃗(t1) · δp⃗1 ≥ 0.

(34)

The optimal trajectory (t, p⃗∗, v⃗∗) yields the local minimum E∗ over all admissible neighborhoods
(t, p⃗, v⃗), and some neighborhoods (t, p⃗, v⃗) could have the same endpoint in both space and time as the
endpoint of the optimal trajectory (t, p⃗∗, v⃗∗), that is δt1 = 0 and δp⃗1 = 0, which turns Eq.(34) into∫ t1

t0

{(
∂H∗

∂p⃗
+

˙⃗
λ

)
·∆p⃗+

(
∂H∗

∂v⃗

)
·∆v⃗

}
dt ≥ 0. (35)

So the optimal trajectory (t, p⃗∗(t), v⃗∗(t)) must satisfy(
∂H∗

∂p⃗
+

˙⃗
λ

)
·∆p⃗+

(
∂H∗

∂v⃗

)
·∆v⃗ ≥ 0, (36)

for all t ∈ [t0, t1]. Back to theN inequality constraints in Eq.(17). We call the constraintwj is inactive at
time t, if wj(p⃗(t), t) < 0; otherwise, active at time t. If the optimal state p⃗∗(t)makes the jth constraint
wj inactive at a certain time t, so wj(p⃗

∗(t), t) < 0. However, for any neighborhood p⃗(t), it must satisfy
Eq.(17), so wj(p⃗(t), t) ≤ 0. This conduces to:

wj(p⃗(t), t) {>,=, or <} wj(p⃗
∗(t), t)

which places no restriction on ∆p⃗(t). On the other hand, if the optimal state p⃗∗(t) makes the jth
constraint wj active at a certain time t, so wj(p⃗

∗(t), t) = 0, and, as before, the neighborhood p⃗(t)must
satisfy wj(p⃗(t), t) ≤ 0. This conduces to:

wj(p⃗(t), t) ≤ wj(p⃗
∗(t), t)

and results in the restriction on ∆p⃗(t) as shown below:

∂w∗
j

∂p⃗
·∆p⃗ ≤ 0. (37)

In case the optimal state p⃗∗(t)makes all constraints wj inactive at a certain time t, so∆p⃗(t) will not be
constrained by any wj . This leads to any possibilities of values of ∆p⃗ at time t. Likewise, the control
v⃗(t) is also arbitrary, leading to arbitrary ∆v⃗ as well. Therefore, to satisfy Eq.(36) when ∆p⃗(t) and
∆v⃗(t) can be arbitrary, the terms in the parentheses must be zero:

∂H∗

∂p⃗
+

˙⃗
λ = 0 and ∂H∗

∂v⃗
= 0. (38)

Eq.(38) expresses the characteristics of the optimal state p⃗∗(t) and optimal control v⃗∗(t) in a certain
time period when all inequality constraints are inactive. In case the optimal state p⃗∗(t) makes some/all
constraints wj active. All active wj must place the restriction on ∆p⃗(t), as shown in Eq.(37). So

∂w∗
j

∂p⃗
·∆p⃗ ≤ 0, j ∈ At, (39)
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where At is a set of indices of the active constraints at time t. To satisfy Eq.(36) when ∆p⃗(t) is con-
strained by Eq.(39), the Farkas’s lemma, described in the appendix B, is then employed. This results
in:

∂H∗

∂p⃗
+

˙⃗
λ+

∑
j∈At

αj(t)
∂w∗

j

∂p⃗
= 0 and ∂H∗

∂v⃗
= 0, (40)

where αj(t) ≥ 0 for all j ∈ At. Eq.(40) expresses the characteristics of the optimal state p⃗∗(t) and
optimal control v⃗∗(t) in a certain time period when some/all inequality constraints are active.

Notice from Eq.(38) and Eq.(40) that if an inequality constraint becomes active by the optimal state
p⃗∗, the term αj∂w

∗
j/∂p⃗ will be added. So we generalize this by raising the additional equation shown

below:
αj(t)wj(p⃗

∗(t), t) = 0, j = 1, ..., N.

In summary, the optimal trajectory (t, p⃗∗(t), v⃗∗(t)) must satisfy:

˙⃗
λ+

∂L∗

∂p⃗
= 0

∂L∗

∂v⃗
= 0

αj(t)wj(p⃗
∗(t), t) = 0, j = 1, ..., N

αj(t) ≥ 0, j = 1, ..., N

λ⃗(t) ∈ Rm,

(41)

for all t ∈ [t0, t1], where L is called the Lagrangian and equals to:

L(t, p⃗(t), v⃗(t), λ⃗(t), α1(t), ..., αN (t))

= H+
N∑
j=1

αj(t)wj(p⃗(t), t).

So far we completely investigate the characteristics of the optimal trajectory (t, p⃗∗, v⃗∗) against the neigh-
borhoods (t, p⃗, v⃗) that have the same endpoint in both space and time as one of the optimal trajectory.
Now it is time to investigate the characteristics of the optimal trajectory (t, p⃗∗, v⃗∗) against the neigh-
borhoods (t, p⃗, v⃗) that have different endpoint to one of the optimal trajectory. That is δt1 ̸= 0 and
δp⃗1 ̸= 0. Do not forget that Eq.(34) must hold for the optimal trajectory (t, p⃗∗, v⃗∗), and because Eq.(35)
holds in the previous investigation, so Eq.(34) turns out to be:(

H∗|t=t1

)
δt1 − λ⃗(t1) · δp⃗1 ≥ 0. (42)

However, the endpoints are constrained by Eq.(18), which yields:

f(p⃗∗(t1)) = 0 and f(p⃗(t1 + δt1)) = 0.

Recall that the optimal state p⃗∗ and the neighborhood p⃗ are assumed to end at the time t1 and t1 + δt1,
respectively. Because of p⃗(t1 + δt1) = p⃗∗(t1) + δp⃗1, so we get:

f(p⃗∗(t1)) = 0 and f(p⃗∗(t1) + δp⃗1) = 0.

Using the Taylor series expansion to above equations yields the following constraint towards δp⃗1:(
∂f∗

∂p⃗

∣∣∣∣
t=t1

)
· δp⃗1 = 0. (43)
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Eq.(43) can be added into Eq.(42) without loss of generality bymultiplying with the real-valued constant
variable γ, and then adding into Eq.(42). Therefore, the optimal trajectory (t, p⃗∗, v⃗∗) must satisfy:(

H∗|t=t1

)
δt1 +

(
γ
∂f∗

∂p⃗

∣∣∣∣
t=t1

− λ⃗(t1)

)
· δp⃗1 ≥ 0, (44)

where γ ∈ R and can be arbitrary real value. However, the endpoints are not constrained by only
Eq.(18) but Eq.(17) as well. If the endpoint of the optimal state p⃗∗ makeswj inactive, sowj(p⃗

∗(t1), t1) <
0, and again, wj(p⃗(t1 + δt1), t1 + δt1) ≤ 0 must hold for the endpoint of the neighborhood p⃗, which
results in:

wj(p⃗(t1 + δt1), t1 + δt1) {>,=, or <} wj(p⃗
∗(t1), t1).

The above equation places no restriction on δp⃗1. On the one hand, if it makeswj active, sowj(p⃗
∗(t1), t1) =

0, and
wj(p⃗(t1 + δt1), t1 + δt1) ≤ wj(p⃗

∗(t1), t1).

The above equation places the restriction on both δp⃗1 and δt1, as shown below:(
∂w∗

j

∂t

∣∣∣∣
t=t1

)
δt1 +

(
∂w∗

j

∂p⃗

∣∣∣∣
t=t1

)
· δp⃗1 ≤ 0. (45)

In case the endpoint of the optimal state p⃗∗(t) makes all constraints wj inactive, δp⃗1 and also δt1
can be arbitrary values, and in order to satisfy Eq.(44), the terms in the parentheses must be zero:

H∗|t=t1 = 0 and
(
γ
∂f∗

∂p⃗

∣∣∣∣
t=t1

)
− λ⃗(t1) = 0. (46)

Eq.(46) expresses the characteristics of the optimal state p⃗∗(t) and optimal control v⃗∗(t) at the time t1
when all inequality constraints are inactive.

In case the endpoint of the optimal state p⃗∗(t) makes some/all constraints wj active. All active wj

must place the restriction on both δp⃗1 and δt1, as shown in Eq.(45). So(
∂w∗

j

∂t

∣∣∣∣
t=t1

)
δt1 +

(
∂w∗

j

∂p⃗

∣∣∣∣
t=t1

)
· δp⃗1 ≤ 0, j ∈ At1 . (47)

To satisfy Eq.(44) when δp⃗1 and δt1 are constrained by Eq.(47), the Farkas’s lemma is employed again,
which results in:

H∗|t=t1 +
∑

j∈At1

βj
∂w∗

j

∂t

∣∣∣∣
t=t1

= 0,

(
γ
∂f∗

∂p⃗

∣∣∣∣
t=t1

)
− λ⃗(t1) +

∑
j∈At1

βj
∂w∗

j

∂p⃗

∣∣∣∣
t=t1

= 0,

(48)

where βj ≥ 0 for all j ∈ At1 . Eq.(48) expresses the characteristics of the optimal state p⃗∗(t) and optimal
control v⃗∗(t) at the time t1 when some/all inequality constraints are active.

Notice from Eq.(46) and Eq.(48) that if an inequality constraint becomes active at time t1 by the
optimal state p⃗∗, the term βj∂w

∗
j/∂t and βj∂w

∗
j/∂p⃗ will be added. We generalize this by raising the

additional equation shown below:

βjwj(p⃗
∗(t1), t1) = 0, j = 1, ..., N.
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In summary, the optimal trajectory (t, p⃗∗(t), v⃗∗(t)) at time t1 must satisfy:

H∗|t=t1 +

N∑
j=1

βj
∂w∗

j

∂t

∣∣∣∣
t=t1

= 0,

(
γ
∂f∗

∂p⃗

∣∣∣∣
t=t1

)
− λ⃗(t1) +

N∑
j=1

βj
∂w∗

j

∂p⃗

∣∣∣∣
t=t1

= 0,

βjwj(p⃗
∗(t1), t1) = 0, j = 1, ..., N

βj ≥ 0, j = 1, ..., N

γ ∈ R.

(49)

For the initial point of the optimal trajectory (t, p⃗∗(t), v⃗∗(t)), the initial point of the state p⃗(t) in
our problem is fixed in both space and time, and can be known in advance. So

p⃗∗(t0) = p⃗0, (50)

where p⃗0 is already known.
Conclusion: If a trajectory (t, p⃗(t), v⃗(t)) is the optimal trajectory to the problem, it must satisfy

the necessary conditions defined by Eq.(41) along with the boundary conditions defined by Eq.(49) and
Eq.(50).

A.3 Sufficient Conditions for Optimality

So far we know that if a trajectory (t, p⃗(t), v⃗(t)) is the optimal trajectory to the problem, which yields
the minimum functionalE∗, it must satisfy Eq.(41). But we cannot say that any trajectory (t, p⃗(t), v⃗(t))
that satisfies Eq.(41) is the (local) minimum trajectory, because in the previous derivation the only first-
order Taylor series was used, causing E − E∗ = 0 when Eq.(41) holds. So we cannot conclude that it
is the minimum trajectory. This is analogous to the problem of finding a point x that minimizes the
function f(x), which we cannot know that the point x that satisfy f ′(x) = 0 is the minimum point
unless f ′′(x) ≥ 0 is satisfied. Therefore, the sufficient conditions for optimality are essential, and we
will examine in this section.

What we need is the conditions that assert E − E∗ ≥ 0 about the (local) minimum trajectory
(t, p⃗∗(t), v⃗∗(t)). Please remember that the point (t, p⃗∗(t), v⃗∗(t)) satisfies the necessary conditions de-
fined by Eq.(41) and the boundary conditions defined by Eq.(49) and Eq.(50). From the definition E in
Eq.(15),

∆ , E − E∗ =

∫ t1

t0

(g − g∗)dt+

∫ t1+δt1

t1

gdt. (51)

According to the Hamiltonian H = g + λ⃗ · h⃗, Eq.(51) becomes:

∆ =

∫ t1

t0

(H−H∗)dt+

∫ t1

t0

λ⃗ · (⃗h∗ − h⃗)dt+

∫ t1+δt1

t1

gdt, (52)

and we can deduce that ∆ ≥ 0 from these following steps:

∆ =

∫ t1

t0

(H−H∗)dt+

∫ t1

t0

λ⃗ · (⃗h∗ − h⃗)dt+

∫ t1+δt1

t1

gdt

∆
(1)

≥
∫ t1

t0

(
∂H∗

∂p⃗
·∆p⃗+

∂H∗

∂v⃗
·∆v⃗

)
dt+

∫ t1

t0

λ⃗ · (⃗h∗ − h⃗)dt+

∫ t1+δt1

t1

gdt

∆
(2)
=

∫ t1

t0

(
− ˙⃗
λ ·∆p⃗−

N∑
j=1

αj

∂w∗
j

∂p⃗
·∆p⃗+

∂L∗

∂v⃗
·∆v

)
dt+

∫ t1

t0

λ⃗ · (⃗h∗ − h⃗)dt+

∫ t1+δt1

t1

gdt
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∆
(3)
=

∫ t1

t0

(
− ˙⃗

λ ·∆p⃗− λ⃗ ·∆ ˙⃗p

)
dt+

∫ t1

t0

(
−

N∑
j=1

αj

∂w∗
j

∂p⃗
·∆p⃗

)
dt+

∫ t1+δt1

t1

gdt

∆
(4)
=

∫ t1

t0

(
− d

dt
(λ⃗ ·∆p⃗)

)
dt+

∫ t1

t0

(
−

N∑
j=1

αj

∂w∗
j

∂p⃗
·∆p⃗

)
dt+

∫ t1+δt1

t1

gdt

∆
(5)

≥
∫ t1

t0

(
− d

dt
(λ⃗ ·∆p⃗)

)
dt+

∫ t1+δt1

t1

gdt

∆
(6)
≈ −λ⃗(t1) ·∆p⃗(t1) + λ⃗(t0) ·∆p⃗(t0) + g∗|t=t1δt1

∆
(7)
= −λ⃗(t1) ·∆p⃗(t1) + g∗|t=t1δt1

∆
(8)
= −γ

(
∂f∗

∂p⃗

∣∣∣∣
t=t1

)
·∆p⃗(t1)−

N∑
j=1

βj

(
∂w∗

j

∂p⃗

∣∣∣∣
t=t1

)
·∆p⃗(t1) + g∗|t=t1δt1

∆
(9)
= −γ

(
∂f∗

∂p⃗

∣∣∣∣
t=t1

)
·∆p⃗(t1)−

N∑
j=1

βj

(
∂w∗

j

∂p⃗

∣∣∣∣
t=t1

)
·∆p⃗(t1)

+ γ

(
∂f∗

∂p⃗

∣∣∣∣
t=t1

)
·∆p⃗(t1) +

N∑
j=1

βj

(
∂w∗

j

∂p⃗

∣∣∣∣
t=t1

)
·∆p⃗(t1)

− γ

(
∂f∗

∂p⃗

∣∣∣∣
t=t1

)
· δp⃗1 −

N∑
j=1

βj

(
∂w∗

j

∂p⃗

∣∣∣∣
t=t1

)
· δp⃗1

+H∗|t=t1δt1

∆
(10)
= −γ

(
∂f∗

∂p⃗

∣∣∣∣
t=t1

)
· δp⃗1 −

N∑
j=1

βj

(
∂w∗

j

∂p⃗

∣∣∣∣
t=t1

)
· δp⃗1 +H∗|t=t1δt1

∆
(11)
= −γ

(
∂f∗

∂p⃗

∣∣∣∣
t=t1

)
· δp⃗1 −

N∑
j=1

βj

(
∂w∗

j

∂p⃗

∣∣∣∣
t=t1

)
· δp⃗1 −

N∑
j=1

βj
∂w∗

j

∂t

∣∣∣∣
t=t1

δt1

∆
(12)

≥ 0.

Explanation:
(1): Assume that H is convex in (p⃗, v⃗). So H−H∗ ≥ ∂H∗/∂p⃗ ·∆p⃗+ ∂H∗/∂v⃗ ·∆v⃗.
(2): Use the fact that H = L −

∑
αjwj and ∂L∗/∂p⃗ = − ˙⃗

λ.
(3): ∂L∗/∂v⃗ = 0 and ∆ ˙⃗p = h⃗− h⃗∗.
(4): d(λ⃗ ·∆p⃗) =

˙⃗
λ ·∆p⃗+ λ⃗ ·∆ ˙⃗p.

(5): Assume that αj(∂w
∗
j/∂p⃗) ·∆p⃗ ≤ 0 for all j = 1, ..., N .

(6): The first two terms come from the rule of integration, and the last one from Eq.(25).
(7): Due to the fact that the initial point in our case is fixed, so ∆p⃗(t0) = 0.
(8): Replace λ⃗(t1) with the boundary condition in Eq.(49).
(9): Replace g∗|t=t1 with H∗|t=t1 − λ⃗(t1) · h⃗∗|t=t1 , and follow from the fact in Eq.(16), Eq.(30), and Eq.(49).
(10): First four terms are cancelled out.
(11): Replace H∗|t=t1 with the boundary condition in Eq.(49).
(12): Assume that γ(∂f∗/∂p⃗)|t=t1 · δp⃗1 ≤ 0 , and βj(∂w

∗
j/∂p⃗)|t=t1 · δp⃗1 + βj(∂w

∗
j/∂t)|t=t1δt1 ≤ 0.
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Conclusion: A trajectory (t, p⃗, v⃗) that yields the (local) minimum functional E∗; in other word
E − E∗ ≥ 0, must satisfy not only the necessary conditions defined by Eq.(41) and the boundary
conditions in Eq.(49), but these following conditions as well:

H is convex in (p⃗, v⃗) (53)

αj

(
∂w∗

j

∂p⃗

)
·∆p⃗ ≤ 0, j = 1, ..., N. (54)

γ

(
∂f∗

∂p⃗

)∣∣∣∣
t=t1

· δp⃗1 ≤ 0. (55)

βj

{(
∂w∗

j

∂p⃗

∣∣∣∣
t=t1

)
· δp⃗1 +

(
∂w∗

j

∂t

∣∣∣∣
t=t1

)
δt1

}
≤ 0, j = 1, ..., N. (56)

wj = 0

wj > 0

wj < 0

p⃗∗

wj = 0

wj > 0

wj < 0

∂w∗
j

∂p⃗

p⃗∗

∆p⃗

Fig. 13. Graphical meaning of the inequality constraint wj(p⃗(t), t) ≤ 0 used in our optimization
problem. Suppose at a certain time t the optimal point p⃗∗(t) on the optimal trajectory makes the
constraint wj active as shown in the figure, we can conclude that ∂w∗

j/∂p⃗ · ∆p⃗ ≤ 0 holds for every
neighborhood p⃗(t), when the distance between those two points (∆p⃗) is infinitesimal.

A.4 Energy-Minimal Walking Characteristics

Our energy-minimal walking characteristics are acquired by replacing the functions in the previous
sections with these following functions: (1) g(t, p⃗(t), v⃗(t)) = m(es + ew∥v⃗(t)∥2), (2) t0 = tc and
t1 = te, and (3) h⃗(t, p⃗(t), v⃗(t)) = v⃗(t), then eliminating the variable λ⃗ in Eq.(41), which results in the
optimal acceleration defined by Eq.(7). In addition, the characteristics of the optimal velocity at time
te, defined by Eq.(9) and Eq.(10), were obtained by using Eq.(49).

Considering the Hamiltonian H = g + λ⃗ · h⃗, we get:

H = m(es + ew∥v⃗(t)∥2) + λ⃗ · v⃗(t),

where the Hessian matrix of this H, corresponding to p⃗ and v⃗ where p⃗, v⃗ ∈ R2, is:

Hessian(H) =


0 0 0 0
0 0 0 0
0 0 2mew 0
0 0 0 2mew


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p⃗∗(t1)

f = 0 p⃗∗(t1)

f = 0

δp⃗1

∂f∗

∂p⃗

∣∣
t=t1

Fig. 14. Graphical meaning of the endpoint constraint f(p⃗(t1)) = 0. Since the endpoints of the opti-
mal trajectory and the neighborhood must lie on this curve, so we can conclude that (∂f∗/∂p⃗)|t=t1 ·
δp⃗1 = 0 holds for every neighborhood of the optimal point p⃗∗(t1), when δp⃗1 is infinitesimal.

which is positive-definite matrix. This means that the Hamiltonian H is convex in (p⃗, v⃗). So the suffi-
cient condition in Eq.(53) is satisfied.

For the inequality constraints wj(p⃗(t), t) ≤ 0, we use the circle equation to represent a virtual
pedestrian’s boundary. Mathematically,

wj(p⃗, t) , r2 − ∥p⃗− p⃗j(t)∥2,

and in addition we obtain the fact that

wj(p⃗(t), t)− wj(p⃗
∗(t), t) =

∂w∗
j

∂p⃗
·∆p⃗(t)− ∥∆p⃗(t)∥2.

At a certain time t, if the optimal point p⃗∗(t) makes the constraint wj inactive (wj < 0), so αj = 0,
causing the sufficient condition in Eq.(54) to be satisfied. If the optimal point p⃗∗(t) makes wj active
(wj = 0) as shown in Figure 13, every neighborhood p⃗(t) that lies in the left half plane specified by
the tangent line at the optimal point p⃗∗(t) will always cause ∂w∗

j/∂p⃗ · ∆p⃗ ≤ 0, and due to αj ≥ 0,
the sufficient condition in Eq.(54) is then satisfied. However, for the neighborhoods p⃗(t) that lie in the
right half plane and yield wj < 0, they could produce ∂w∗

j/∂p⃗ ·∆p⃗ ≥ 0. As ∆p⃗(t) is infinitesimal, the
admissible neighborhood p⃗(t) within some small radius ϵ will cause ∂w∗

j/∂p⃗ ·∆p⃗→ 0, as shown in the
bottom-right rectangle in Figure (13). Therefore, the sufficient condition in Eq.(54) is satisfied.

For the endpoint constraint f(p⃗(t)) = 0, the endpoint of the optimal trajectory (p⃗∗(t1)) and the
endpoint of the neighboring trajectory (p⃗(t1 + δt1)) must lie on this curve f , and because of the in-
finitesimal distance between these two endpoints, we obtain:(

∂f∗

∂p⃗

)∣∣∣∣
t=t1

· δp⃗1 = 0.

This results in the satisfaction to the sufficient condition in Eq.(55) nomatter what γ is. For the graphical
description, please see Figure 14.

The explanation for the satisfaction towards the sufficient condition in Eq.(56) is similar to one in
Eq.(54) except that instead of examining the level curves wj(p⃗, t) at a specific time t as shown in Figure
13, the level surfaces emerge when the time t is considered. As virtual pedestrians are supposed to walk
with constant velocity in MEM, the level surface are from extruding a circle in an upward direction
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(in time direction), resulting in a slanted cylinder if a pedestrian walks with some speed; otherwise a
straight cylinder. In case the optimal point p⃗∗(t1)makes the constraint wj inactive (wj < 0), so βj = 0,
causing the sufficient condition in Eq.(56) to be satisfied. Likewise, if the optimal point p⃗∗(t1) makes
wj active (wj = 0), every neighborhood p⃗(t1 + δt1) in an outer region specified by the tangent plane
at the optimal point p⃗∗(t1) (similar to the left half plane in Figure 13) always satisfy Eq.(56). However,
for the neighborhoods p⃗(t1 + δt1) that lie in the inner region (similar to the right half plane in Figure
13) and yield wj < 0, they could cause the left-hand side of Eq.(56) to greater than or equal to zero. But
δp⃗1 is infinitesimal, those terms will approach to zero. Therefore, the sufficient condition in Eq.(56) is
satisfied.

As all sufficient conditions are attained, any position p⃗(t) and the velocity v⃗(t) that conform to the
energy-minimal walking characteristics, defined by Eq.(7) - (10), are the solution that yields the (local)
minimum walking energy.

Appendix B Farkas’s Lemma

Let q⃗ ∈ Rn and x⃗ ∈ Rn be n-dimensional vectors, and letA ∈ Rm×n denote a realm× n matrix:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
... ... ...

am1 am2 · · · amn


Then, the statement that:

• q⃗ · x⃗ ≤ 0 for all x⃗ such thatAx⃗ ≥ 0

is equivalent to the statement that:

• there exists anm-dimensional vector v⃗ ∈ Rm such that v⃗TA+ q⃗T = 0.
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