
Article

Efficacy of a GPGPU-Acceleration to Inundation
Flow Simulation in Tonle Sap Lake in Cambodia

Takashi Nakamura1,*, Shun Murakami2, Lun Sambo3, and Hideto Fujii4

1 Department of Global Engineering for Development, Environment and Society, Tokyo Institute of
Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
2 IDAJ Co., LTD., 2-2-1-1 Minato Mirai, Nishi-ku, Yokohama 220-8137, Japan
3 Department of Rural Engineering, Institute of Technology of Cambodia, PO Box 86, Russian
Federation Blvd., Phnom Penh, Cambodia
4 Department of Food, Life and Environmental Sciences, Yamagata University, 1-23 Wakaba-machi,
Tsuruoka, Yamagata 997-8555, Japan
E-mail: *tnakamur@tse.ens.titech.ac.jp (Corresponding author)

Abstract. A new two-dimensional numerical model is developed for a rapid computation of the sea-
sonal inundation phenomena in Tonle Sap Lake in Cambodia. In order to overcome a huge computa-
tional cost for a prolonged analysis over an extensive area, the General-Purpose computing on Graphics
Processing Units (GPGPU) technology is applied to the model. The developed model is applied to a
solution of seasonal inundation process for the 154 days in 2002. Calculated result is compared with
observational data and satellite remote sensing. It is found that the developed model seems to success-
fully reproduce reasonable progress/regress of inundation. A breakdown of the total elapsed time for
the numerical analysis is considered in a detail. It is found that the GPGPU technology can accelerate
the solution more than one hundred times faster by employing a simple rectangular mesh and coding
to reduce a memory access overhead.

Keywords: GPGPU, numerical inundation flow model, shallow water equation, Tonle Sap Lake.

ENGINEERING JOURNAL Volume 23 Issue 1
Received 16 March 2018
Accepted 11 November 2018
Published 31 January 2019
Online at http://www.engj.org/
DOI:10.4186/ej.2019.23.1.151

DOI:10.4186/ej.2019.23.1.151

1. Introduction

Tonle Sap Lake (TSL) is the largest freshwater lake on Southeast Asia. The lake is located roughly
at the center of the kingdom of Cambodia (Fig. 1). Through Tonle Sap River (TSR) located on the
southeast of the lake, TSL is connected to the Mekong River (MR). TSL has a quite unique hydraulic
and hydrological characteristic. The climate of the region is characterized by clearly divided dry (from
November to April) and wet (from May to October) seasons [1]. During the dry season, TSL releases
water to the MR (maximum discharge 10,000 m3/s) and its depth is kept to be shallow (minimum
monthly depth is 1.5 m) [2, 3]. Conversely, during the wet season, TSL receives a large amount of
water from the MR due to reversal flow caused in TSR [4]. The maximum flux of the reversal flow can
reach up to about 10,000 m3/s. This phenomenon causes a significant rising of TSL’s water level and
fills up wide floodplains surrounding the lake. At the end of wet season, the lake’s depth reaches up
to 10 m and surface water area expands to six-fold area (15,000 km2) compared to that of dry season
(2,600 km2) [2]. In addition to a function as a detention reservoir for the Mekong Delta area [3], TSL
is providing important infrastructures of society and ecosystem. TSL provides the largest fishery in
Cambodia, which accounts for 70 % of the protein consumed in the country [5]. The flooded forest,
shrub, grassland and agricultural field on the floodplain provide habitats and foods for a wide range
of species including globally threatened species. The lake and its floodplain support the productive
biodiversity.

The recent researches suggest that the ecosystem of TSL had achieved a certain stage ofmaturity until
at least 2010 and its food web is being a vulnerable, albeit with the relatively healthy ecosystem [6, 7].
Furthermore, the future of TSL is uncertain. TSL and the MR basins are changing at a rapid rate under
the severe pressures such as economic growth, population increase, infrastructure development and
climate change [2, 8]. Recently, theMekongRiver Commission (MRC) investigated eight different future
scenarios in which probable development of water infrastructures and climate change were considered
[8]. The study concluded that a flooded depth during wet season could be reduced by 0.5 m. This change
could threaten the highly productive biodiversity in TSL by reducing the flooded area by 400-900 km2.
These findings suggest that TSL is now standing at a turning point for sustaining its brilliant ecosystem
and valuable resources.

In order to keep using the TSL’s resources sustainably in assessing environmental and ecological
risks, well understanding of the hydraulics is needed. Nonetheless, at the present time, the hydraulic re-
search on TSL still remains at an early stage. Indeed, while surface hydrology of TSL is well understood
and has been explained through many numerical models [9, 10, 11, 12, 13], a few numerical hydraulic
dynamics models have been successfully applied to analysis of a whole area of TSL [11, 12, 13]. There is
no doubt that one of the barriers to apply the hydraulic model is a huge computational cost requested by
topographical and hydraulic features of TSL. Namely, long-term and large-scale computations should
be needed for the practical assessments because the TSL’s water bodies spreads over a quite wide area
(almost 200×75 km2 in wet season) and important environmental phenomena are caused by the sea-
sonal change of hydraulic conditions such as the reversal flow during wet season. To overcome the
huge computational cost, in the case of WUP-JICA model [11], TSL is represented as a network of one-
dimensional channels and two-dimensional progress of inundation is approximately solved by the rapid
one-dimensional solutions. Even in the case of the MRCS/WUP-FIN model [12], while the model is a
multi-dimensional flow model that does not use the approximation with the one-dimensional channels,
it is recommended that the spatial size of computational mesh should be larger than 1 km to finish the
computation with affordable elapsed time [13]. On the other hand, recently it has been known that the
minute fluctuation of altitude over the floodplain can affect to the inundation flow [8]. Thus, in order
to advance the practical assessments of TSL in the future, the model is being demanded to employ the
finer mesh and cope with much more computational cost than the past.

General-Purpose computing onGraphics ProcessingUnits (GPGPU) technology [14, 15] is expected
to be a promising countermeasure against the increasing computational cost. The technology can poten-
tially accelerate the calculation by a parallel computation using massive calculation cores in a Graphic

152 ENGINEERING JOURNAL Volume 23 Issue 1, ISSN 0125-8281 (http://www.engj.org/)

DOI:10.4186/ej.2019.23.1.151

Fig. 1. Major river system in Cambodia.

Processing Unit (GPU), which is originally designed to create images for output to a display device. The
GPGPU technology has already been applied to inundation flow analysis. However, because the past
applications mainly targeted tsunami propagation in a short-term period and inundation in relatively
small area along a river [16, 17], there is no knowledge of applicability to a long-term and large-scale sim-
ulation of the seasonal flooding in TSL. Thus, in this study, we developed a new inundation flow model
with the GPGPU and investigated the efficacy of a GPGPU-acceleration to the inundation analysis of
TSL.

In the model development, we paid much attention to serviceableness for the daily management of
the lake. This study is conducted as a part of the international research project, “Establishment of Envi-
ronmental Conservation Platform of Tonle Sap Lake” supported by Science and Technology Research
Partnership for Sustainable Development (SATREPS) [18]. The goal of the project is establishment of
water-environment analytical tools that help science-basedmanagement by the Cambodian government.
The present model is expected to take a part in the tools. Due to an aftereffect of unfortunate Cambodia
Civil War in the last century, even now the Cambodian technicians with the highly specialized skills of
the numerical hydraulic simulation seem to be lack. Therefore, in order to utilize the model for daily
assessment, the simulation model should be easy-to-use and easy-to-understand. Consequently, we de-
cided that the inundation flow model is developed with the simplest mesh and well-established schemes
although there are various inundation models using a sophisticated mesh system and advanced schemes
of high-order accuracy [16, 17].

In the next chapter, the numerical model is described. Then, after explaining the basic concept
of application of GPGPU to the two-dimensional shallow water equation, the model is applied to a

ENGINEERING JOURNAL Volume 23 Issue 1, ISSN 0125-8281 (http://www.engj.org/) 153

DOI:10.4186/ej.2019.23.1.151

long-term simulation of TSL with a fine mesh-size (250 m). The effectiveness of the present model is
discussed by comparing the elapsed time with a conventional model, which does not use the GPGPU
solution.

2. Numerical Model

2.1. Governing Equation

The model solves the two-dimensional shallow water equation in a Cartesian coordinates (x, y);

∂tw + ∂xF(w) + ∂yG(w) = Sbtm + Sfric + SCor + SRey, (1)

w = (h, hu, hv)T ,F(w) = (hu, hu2 + gh2/2, huv)T ,G(w) = (hv, huv, hv2 + gh2/2)T , (2)
where h(t, x, y) is depth, u(t, x, y) and v(t, x, y) are depth-averaged velocity in the x and y directions,
respectively, w is a vector of Riemann invariants to be solved, F and G are the tensor fluxes. The
symbol ∂λa represents a partial differential operation ∂a/∂λ. Sbtm, Sfric, SCor and SRey represent the
forces due to the spatial gradient of water level, bottom friction, Coriolis effect and Reynolds stress,
respectively [19];

Sbtm = gh(0, ∂xz, ∂yz)
T , (3)

Sfric = −g(n∗)2h−1/3(0, u(u2 + v2)1/2, v(u2 + v2)1/2)T , (4)
SCor = fch(0, v,−u)T , (5)
SRey = (0, ∂x(νth∂xu) + ∂y(νth∂yu), ∂x(νth∂xv) + ∂y(νth∂yv))

T , (6)

where z(x, y) is an altitude of bed surface, n∗Manning’s roughness coefficient and fcCoriolis coefficient.
In this work, a linear eddy viscosity model is employed as the Reynolds stress. The turbulent viscosity
coefficient νt is assumed to be constant that is calculated from a computational mesh size L by using the
Richardson’s 4/3 power law; νt = 0.01L4/3 [20, 21].

2.2. Mesh and Discretization

Equation (1) is solved with a finite volumemethod [22]. In order tomake themodel easy-to-use and easy-
to-understand, a uniform rectangular mesh system and the simple 1st-oder Roe approximate Riemann
scheme [23] are employed. The variablew is stored at the centroids of each computational cell (Fig. 2).
By dividing the time domain in sub-interval [tn, tn+1] with time increment ∆t, Eq. (1) is discretized
using the finite volume approach;

wn+1
ij = wn

ij+
∆t

∆x

(
Fi− 1

2
,j − Fi+ 1

2
,j

)
+

∆t

∆y

(
Gi,j− 1

2
−Gi,j+ 1

2

)
+

∆t

∆x∆y

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

Sdxdy, (7)

where wn
ij represents the averaged value of w in the cell (xi, yj) at time tn and S = Sbtm + Sfric +

SCor + SRey. Fi± 1
2
,j = F(wn

i± 1
2
,j
) andGi,j± 1

2
= G(wn

i,j± 1
2

) are fluxes on the cell boundary [23]. The
discretized formulations of Eq. (7) are detailed in Appedix. The adoption of the simple rectangular
mesh and 1st-order Riemann scheme gives the significant advantage to the GPGPU acceleration. It
is well known that a memory access overhead often causes the severe degradation of computational
speed when the GPGPU is applied [14, 15]. The adoption of a rectangular mesh system enables a rapid
sequential access to computer memory, and the adoption of the simple scheme of 1st-order accuracy
enables to reduce the frequency of memory access as compared with high-order accuracy schemes bases
on long-stencil discretization [24].

154 ENGINEERING JOURNAL Volume 23 Issue 1, ISSN 0125-8281 (http://www.engj.org/)

DOI:10.4186/ej.2019.23.1.151

Fig. 2. Computational mesh system.

(a) Before wetting (b) After wetting

Fig. 3. Schematic view of wetting process. For simplicity, only two neighbour cells (i − 1, j) and
(i, j + 1) are shown.

2.3. Wetting and Drying Algorithm

In order to model inundation processes, a simple element removal algorithm is employed [25]. All
computational cells are classified into the “wet (flooded) cell where the water body exists” and “dry (no
flooded) cell where land surface is not covered with the water”. The “dry cells” are removed from the
calculation and the shallow water equation (1) is solved only at the “wet cells”. To trace a temporal
change of inundation area, the classification is updated every time step and the newly wetting/drying
cells are detected by checking the water depth after solving Eq. (7). If water depth in a “wet cell”
becomes shallower than a certain small threshold value hc, all water body is considered to migrate
from the cell and the cell is changed from “wet” to “dry”. The change from “dry” to “wet” is detected
by comparing the water level. Let us consider a “dry” (i, j) cell with its neighbor four “wet” cells,
(l,m) = (i− 1, j), (i+1, j), (i, j − 1), (i, j +1). If the neighbor water levelHlm = hlm + zlm exceeds
the minimum water level for (i, j) cell given by Hc = hc + zij (Fig. 3(a)), a total excess volume Ve is

ENGINEERING JOURNAL Volume 23 Issue 1, ISSN 0125-8281 (http://www.engj.org/) 155

DOI:10.4186/ej.2019.23.1.151

Fig. 4. Water surface calculated for two-dimensional sloshing problem.

calculated as

Ve = ϕi−1j∆Hi−1j + ϕi+1j∆Hi+1j + ϕij−1∆Hij−1 + ϕij+1∆Hij+1, (8)

∆Hlm = Hlm −Hc, ϕlm =

{
∆x∆y if (l,m) cell is wet
0 if (l,m) cell is dry

. (9)

Then, if the excess water volume Ve is enough large to fill in the “dry” (i, j) cell with a hc thick water
layer (Ve > ∆x∆yhc), a portion of Ve in the neighbor cells is considered to flow into the “dry” (i, j)
cell and the (i, j) cell is changed to “wet” cell which has the minimum water depth hij = hc (Fig. 3(b)).
In that case, the water level at the neighbor “wet” (l,m) cells is reduced by∆Hcor

lm = hc(ϕlm∆Hlm/Ve)
in order to cancel the increasing of water volume due to the newly “wetting” (i, j) cell.

2.4. Two-Dimensional Sloshing Benchmark Problem

To check the fundamental accuracy of the model, the present model is applied to a two-dimensional
sloshing problem in an elliptic paraboloid basin. For the problem, Thacker derived a theoretical solution
given by the elliptic paraboloidal water surface that oscillates with a constant period Tosci [26]. In the
test problem, we assumed the same initial conditions as Thacker used. Initially, a stationary water body
locally stands within a L = 2 km radius of the bottom of the basin. A profile of the water surface is
given by a rotating circular wave whose wave height ∆H̃ is 1 m. The calculations is conducted for one
recurrence period Tosci = 1774 sec. The time increment ∆t is determined at each time step in order to
keep the CFL number for the water surface wave less than 0.1 (roughly ∆t ∼ 0.2 sec). ∆x = ∆y = 8
m is used for the spatial mesh-size so that a vertical change of water surface per mesh (∆x∆H̃/L) is
roughly the same as that appearing in the calculation of the TSL described in the later chapter. Figure 4
and Fig. 5 show a bird’s-eye view of the calculated water surface and cross-sectional results, respectively.

156 ENGINEERING JOURNAL Volume 23 Issue 1, ISSN 0125-8281 (http://www.engj.org/)

DOI:10.4186/ej.2019.23.1.151

Fig. 5. Cross-sectional water surface profile calculated for two-dimensional sloshing problem [Cross-
section along the centerline y = 0 (red) and diagonal line y = x (blue)].

As shown in Fig. 5, through the computation, the maximum difference between the calculated water
level and exact solution is less than 2.0 cm, and the calculated result agrees very well with the theoretical
solution.

3. Acceleration by GPGPU

3.1. GPU Architecture

The GPGPU is a technology, which uses a Graphic Processing Unit (GPU) to perform various com-
putations traditionally handled by a Central Processing Unit (CPU). Commonly the GPU is packaged
on an expansion card of a Personal Computer (PC) together with random access memory dedicated to
the GPU (Fig. 6). In order to handle the huge computations to create images for output to the display,
the GPU employs Single Instruction Multiple Data (SIMD) architecture and a great many calculation
units are assembled in the GPU. Figure 7 shows a schematic view of GPU manufactured by NVIDIA
Company, which is one of the major global suppliers. In the NVIDIA’s GPU, the smallest calculation
unit of GPU is called “CUDA core”. In the case of “Tesla P100” model released at 2016, the GPU
includes 56 Streaming Multiprocessors (SMs) and each SM consists of the 64 CUDA cores. Thus, the
GPU includes 56×64=3,584 CUDA cores in all. There are some types of random access memory with
the GPU. “Shared memory” is an on-chip memory associated with each SM. While the access to it from
the outside of the SM is prohibited and its capacity is small (less than several tens of kilobytes), the

ENGINEERING JOURNAL Volume 23 Issue 1, ISSN 0125-8281 (http://www.engj.org/) 157

DOI:10.4186/ej.2019.23.1.151

Fig. 6. GPU expansion card in PC.

Fig. 7. Schematic view of GPU architecture (NVIDIA Tesla P100).

access speed to the shared memory from the CUDA cores is very fast. On the other hand, “Global
memory” is an off-chip memory allocated in DRAM chips on the expansion card. In contrast to the
shared memory, while the access speed to global memory is slower than that to shared memory, its
large capacity can reach up to several gigabytes and all CUDA cores are allowed to access to it.

3.2. Basic Concept of GPGPU-Acceleration of the two-dimensional Shallow Water Equation

Acceleration by the GPGPU is based on a parallel computing using the massive CUDA cores. The
NVIDIA provides a programing platform called “CUDA” for the GPGPUparallel computing [14]. This
CUDA platform consists of a compiler and programing libraries designed to work with C, C++ and
Fortran languages. By using its API functions, we can relatively easily develop a GPGPU-accelerated
parallel code without a troublesome programing to control the GPU device.

The programming with the CUDA platform is based on a heterogeneous model, in which both the
CPU andGPU are used. Figure 8 shows a basic procedure of the parallel solution of the two-dimensional
shallow water equation. The “host side” refers to the CPU and its memory in a PC, while the “device
side” refers to the GPU and its memory packaged in the expansion card. After a computation starts, all
initial conditions, together with the other conditions such as topography, are prepared in the memory
allocated in the host side. Next, the all prepared data is transfered to the global memory in the “device

158 ENGINEERING JOURNAL Volume 23 Issue 1, ISSN 0125-8281 (http://www.engj.org/)

DOI:10.4186/ej.2019.23.1.151

side”. Then, the solution starts on the GPU.On the device side, by a repeated calculation of Eq. (7) with
the wetting/drying treatments, time development of the water depth and water current is solved. In
order to accelerate this calculation, we employed a parallel computing based on a domain-decomposition
approach. Awhole computational domain is split into many “subdomains”, which are small rectangular
areas containing the same number of computational cells. In this work, a size of each subdomain is
set to 32×32 cells. The SMs in the GPU are assigned to the subdomains one by one, and each SM
is charged to solve the new value wn

ij in the assigned subdomain. This calculation can be conducted
simultaneously with the other SMs because all calculations in the present model are based on the simple
explicit formulation. In addition to this parallelizing by the domain-decomposition, simultaneously,
the solution in each subdomain can be also parallelized by using 64 CUDA cores grouped in each SM.

Even if the CUDAplatform is used, various contrivances are needed in order to archive a satisfactory
acceleration [14, 15]. One of the most important contrivances is reducing a memory access overhead
because memory access latency is several tens or hundreds times larger than that of basic arithmetic
operations calculated by the CUDA core. In the present model, while all data transfers in the device
side are generally coded to be coalescing memory access without bank conflicts in order to reduce the
latency, the calculation in a CUDA core is coded to use the shared memory as a data buffer in order
to reduce the number of times that the core reads data from the global memory. While data transfer
between the device and host sides is conducted by the PCI Express (PCIe) bus which connects the
expansion GPU card with PC, speed of the bus (32GB/s) is generally quite slow even in comparison
with the slowest data transfer within the device side (720GB/s between the global memory and CUDA
cores). Thus, the present model is coded in order to reduce the frequency of these quite slow data
transfer to the minimum; normally any data is not transferred between the host and the device after
translating the initial conditions except when the calculated results are outputted to a HDD at certain
time intervals.

Fig. 8. A schematic view of a basic concept of the parallel solution with GPGPU.

ENGINEERING JOURNAL Volume 23 Issue 1, ISSN 0125-8281 (http://www.engj.org/) 159

DOI:10.4186/ej.2019.23.1.151

(a) (b)

Fig. 9. Computational Domain; (a) topographic map of a whole domain and (b) birds-eye view of a
part area given by a white dashed box in panel (a).

Table 1. Specification of processers used for computation.

Clock Used Memory Transfer Peak Speed [GFLOPS]†
Processer Name [GHz] Cores Bandwidth[GB/s] (Normalized by CPU)
CPU: Intel Xeon E5-2630 v4 2.2 1 68.3 28.8 (1)
GPU: NVIDIA Tesla P100 1.328 3584 732 4700 (163)
† :performance for double precision data format.

4. Application to the Tonle Sap Lake

The developed model is applied to an inundation simulation in TSL. The calculated results are com-
pared to the observed data and satellite remote sensing. Efficacy of GPGPU-acceleration is checked by
comparison with a conventional model that uses only the CPU.

4.1. Computational Conditions

Figure 9 shows awhole computational domain to be solved. The domain of about 220×250 km2 includes
wide floodplains, major tributaries and an upstream section of TSR between Prek Kdam (PK) and TSL.
The domain is discretized with a uniform rectangular mesh of ∆x = ∆y = 250 m. The number of
computational cells reaches to 899,136 in all. While the altitude of each cell in land is set from “Shuttle
Radar Topography Mission 3-arc second global digital elevation model (SRTM3)” [27], the altitude in
water area is set from “Hydrographic atlas of the Mekong River” [28] which is a digital bathymetry
map based on the survey in the 1960s. Hydraulic conditions used for the computation are shown in
Fig. 10. The present model is applied to the 154 days from 18th July to 19th December in 2002.
During the period, the flow rate of TSR was fortnightly measured at PK by boat mounted Acoustic
Doppler Current Profiler (ADCP) [29]. Thus, the hourly flow rate data, which is interpolated from the

160 ENGINEERING JOURNAL Volume 23 Issue 1, ISSN 0125-8281 (http://www.engj.org/)

DOI:10.4186/ej.2019.23.1.151

Fig. 10. Hydraulic conditions during the calculated period.

fortnightly ADCP data, is imposed as a boundary condition at the downstream end of TSR, where a
red line named “PK BC” is shown in Fig. 9 (a). Together with the flow rate, an observational time series
data of water level at Prek Kdam is imposed at the same boundary. For the eleven major tributaries
except the Boribo River, time series data of flow rate provided by MRC [30] is imposed as a boundary
condition at each position represented by a red box in Fig. 9 (a). The top four flow rate in the tributaries
are shown in Fig. 10 (c) and (d). On the other hand, the boundary condition is not imposed on the
Boribo River, for which the observational data is unavailable. Because the small basin area of the Boribo
River (827 km2) accounts only for 1.4% of the total area of the TSL (57,632 km2), it is expected that the
disregard of the Boribo does not have a large influence on the calculated result. Time increment is set
to ∆t = 10 sec. As initial conditions, while stationary water body (u = v = 0) is assumed, a spatial
profile of water level is set by a linear-interpolation with the observed water level at three water gauge
stations, Prek Kdam, Kampong Chhnang and Kampong Luong.

Manning’s roughness coefficient n∗ is assumed to be constant over the whole of the computational
domain. n∗ is a parameter that should be carefully adjusted to each object area, because the proper value
of n∗ naturally depends on circumstances of land cover such as existence of vegetation and kind of soil
material [31, 32]. Actually, in this work, we found that the Manning’s roughness coefficient seems to

ENGINEERING JOURNAL Volume 23 Issue 1, ISSN 0125-8281 (http://www.engj.org/) 161

DOI:10.4186/ej.2019.23.1.151

be a dominant factor to affect a calculated result of water level. Therefore, we conducted a series of
simulations with different n∗ raging from 0.015 m−1/3sec (normal value for an earthen water channel
without vegetation) to 0.045 m−1/3sec (for a floodplains with scattered bush and heavy weeds). Then,
we determined the most proper value by comparing the simulations.

The GPU and CPU used in this work are shown in Table 1. The double precision format is used for
all of real numbers in the calculation. Speed of calculation by a possessor is usually measured in FLOPS,
which stands how many times the possessor can perform arithmetical operations with floating-point
data during one second. Theoretically expected peak speed of the GPU reaches up to 4,700 GFLOPS,
which is 163 times faster than that of the CPU (28.8 GFLOPS).

Fig. 11. Influence of Manning’s roughness coefficient n∗ on the water level at Kampong Luong. Cir-
cles and solid lines represent observational data and calculated results, respectively.

Table 2. Nash–Sutcliffe model efficiency coefficient for the solution of water level.

Manning’s roughness coefficient n∗ [m− 1
3 sec] NSE

0.015 0.924
0.020 0.974
0.025 0.979
0.030 0.989
0.035 0.990
0.040 0.982
0.045 0.969

162 ENGINEERING JOURNAL Volume 23 Issue 1, ISSN 0125-8281 (http://www.engj.org/)

DOI:10.4186/ej.2019.23.1.151

Fig. 12. Calculated inundation area and water level (n∗ = 0.035).

4.2. Calculated Results

Figure 11 shows a dependency of calculated water level on Manning’s roughness coefficient n∗. As
shown in Fig. 10 (b), before the beginning of Oct., water flows from Tonle Sap River to Tonle Sap Lake
due to the reversal flow. Therefore, the observational water levels at Kampong Luong and Kampong
Chhnang continuously rise until the beginning of Oct. After water level reaches to the peak at the
beginning of Oct., water level starts to fall because a direction of flow in Tonle Sap River changes to the
normal flow. As shown in Fig. 11, before the beginning of Oct., calculated water level rises more rapidly
as n∗ decreases. Similarly, after the beginning of Oct, the calculated fall of water level becomes to be
more rapid as n∗ decreases. Such acceleration of the change of water level is reasonable from a viewpoint
of physical meaning of n∗. Because the frictional force Sfric is proportion to (n∗)2 as shown in Eq. (4),
frictional resistance to the water flow becomes to be weaker as n∗ decreases. Therefore, transportation
of water to/from TSL is enhanced and the change of water level is accelerated by decreasing n∗. Table
2 shows the Nash–Sutcliffe model efficiency coefficient (NSE) estimated by

NSE = 1− 1

Ns2

N∑
n=1

(Hn
Obs −Hn

Sim)2, (10)

where N is the number of observational data. Hn
Obs and Hn

Sim are observational and calculated water
levels, respectively. s2 is the sample variance of Hn

Obs. NSE indicates the relative magnitude of the
model’s prediction error compared to the observed data variance. “NSE=1” means that the calculated
result exactly agrees with the observed data [4]. As shown in Table 2, NSE reaches a peak at n∗ = 0.035

m− 1
3 sec. The maximum value (NSE=0.990), which is close to 1, means that the present model has a

good performance in the solution of water level. We regard 0.035 m− 1
3 sec as the most proper n∗ and

ENGINEERING JOURNAL Volume 23 Issue 1, ISSN 0125-8281 (http://www.engj.org/) 163

DOI:10.4186/ej.2019.23.1.151

Fig. 13. Comparison of calculated water level with observational data (n∗ = 0.035).

the calculated results with the value are shown in the following.
Figure 12 shows the temporal change of calculated inundation area and water level. While the el-

evation in the non-flooded area is represented in monochrome, the water level in the flooded area is
shown in a color contour map. As shown in Fig. 10(a), the highest water level was observed around the
beginning of Oct. when the reversal flow ended. As shown in Fig. 12, the present model reproduces
not only this rising of water level and the expanding of inundation area, but also the shrinking process
of flooded after the beginning of October.

Figure 13 shows a comparison with the water level observed at two water gauge stations, Kampong
Luong and Kampong Chhnang. The Kampong Luong and Kampong Chhnang locate on TSL and TSR,
respectively and the distance between the two stations reaches to about 70 km (Fig. 9). As shown in Fig.
13, the calculated water levels agree well with the observational data. Furthermore, the present model
successfully reproduces the time lag in rising of water level between the two water gauge stations during
the period before the water level reaches to the peak at the beginning of Oct. On the other hand, during
the later period fromOct. to Dec. in that the water level falls, calculated water level slightly differs from
the observation while the difference is kept to be no more than 20 cm. Although the concrete cause
of the degradation of results has not been specified at the present time, there are some suspect causes;
low temporal resolution of observed data used for the boundary conditions (especially, fortnightly data
of flow rate at Prek Kdam), disregard for the precipitation/evaporation processes and employment of
uniform Manning’s roughness coefficient for the whole area without regard to spatial change of land
cover. It is expected that the model performance can be further improved by coping the above suspect
causes.

Figure 14 shows a comparison of inundation area to the satellite remote sensing. In each panel,
while the white lines show the water’s edge calculated by the present model, the red pixels represent the
water existence area detected by the Normalized Difference Water Index (NDWI) [33]. The NDWI is
estimated with Landsat-7 ETM+ data:

NDWI = (VIS− SWIR)/(VIS+ SWIR), (11)

where VIS and SWIR are reflectance of visible green and short-wave infrared lights, respectively. In this

164 ENGINEERING JOURNAL Volume 23 Issue 1, ISSN 0125-8281 (http://www.engj.org/)

DOI:10.4186/ej.2019.23.1.151

Fig. 14. Comparison of inundation area to satellite remote sensing (n∗ = 0.035).

work, band-1 and band-5 of ETM+ are used for the VIS and SWIR respectively, andNDWI= 0.4 is used
for the threshold value of water existence. While the calculated inundation area seem to be different
from the remote sensing in the northwest part where the water cannot be detected by the satellite remote
sensing due to the flooded forest covering the water surface, it is found that the calculated inundation
area agrees with the remote sensing results as a whole.

4.3. Efficacy of the GPGPU-Acceleration

The present parallel computing model with the GPU is recoded into a conventional non-parallel com-
puting model, which uses only the CPU without the GPU. In order to assess the efficacy and usability
of GPGPU acceleration, elapsed time for the simulation of TSL is compared between the present model
and the conventional model. The conventional model is not implemented in a parallel computingmodel
and only one core on the CPU is used for the simulation. Table 3 shows the elapsed time spent on the
solution of the 154 days in TSL. As shown in column (a), while the conventional model spends almost
one week, the present model enables to finish the solution in an hour and a half. This fact means that
even a yearlong simulation can be finished in less than four hours by the present model. The speed of
the present model, which can be estimated from the inverse of the total elapsed time, reaches up to 104
times faster than that of the conventional model. While this acceleration of the speed is surprising, the
measured speed of the present model degrades from the theoretically expected peak speed of the GPU
that is 163 times faster than the CPU (see Table 1).

The cause of this degradation is not the calculation (arithmetic operations) but the data transfer and
data output. Table 4 shows how much time was spent for each process. As shown in column (a), the
calculation is accelerated to 165 times faster, which is the nearly theoretical peak speed of the GPU.
On the other hand, the data transfer and output take a quite long time. Interim results were outputted
into files on HDD every 6 hours (2,160 time steps) in the simulation of TSL. As well known, reading
from/writing to a disk drive such as HDD needs an extraordinary much time compared to an arithmetic
operation on the processor. Furthermore, even if the GPGPU is applied, the reading/writing processes

ENGINEERING JOURNAL Volume 23 Issue 1, ISSN 0125-8281 (http://www.engj.org/) 165

DOI:10.4186/ej.2019.23.1.151

cannot be accelerated at all because the reading/writing to the disk drive is essentially a sequential process
and the process cannot be carried out in parallel. Therefore, while time for the calculation is sub-second
(column (a) of Table 4), time for the data output reaches up to a few seconds for both the conventional
model and present model (column (c) of Table 4). Generally speaking, the overhead concerning the
data output tends to be a dominant factor for the effective GPGPU acceleration, because the overhead of
output becomes to be relatively longer than the time for the calculation that can be drastically shortened
by the parallel computing of the GPGPU. Actually, as shown in the breakdown of the total elapsed time
(column (b) and (c) of Table 3), the data output accounts for 36% of the total elapsed time in the present
model and this large overhead causes the degradation of the computing speed from the theoretically
expected value.

It must be valuable to point out that the data transfer process is also important factor in the GPGPU
computing to archive a rapid solution as well as the output process. The column (b) of Table 4 shows
time spent to transfer the calculated data from the “device side” (GPU) to the “host side” (CPU) before
outputting the data to a HDD. Because of slow transfer via the PCIe bus, in the present model, the time
of the transferring (12 msec; column (b) of Table 4) becomes to be almost five times longer than that
of calculation (2.5 msec; column (a) of Table 4). This fact suggests that the frequency of data transfer
between the “device” and “host” must be reduced to minimum in order to get the effective GPGPU
acceleration as it was done in the present model.

Table 3. Elapsed time for the solution of the TSL.

(a) Total (b) For calculation (c) For data output†
(Normalized speed) (% in the total) (% in the total)

Conventional model 6.34 day (1) 6.32 day (99.7 %) 31.8 min (0.3%)
Present model 86.8 min (104) 55.2 min (63.6%) 31.6 min (36.4 %)
† :interim results are outputted every 6 hours (every 2160 time steps)

Table 4. Time consumed to carry out each process once.

(a) Calculation for one time step (b) Data transfer (c) Data output
(Normalized speed) from GPU to PC to HDD

Conventional model 0.41 sec (1) - 3.1 sec
Present model 2.5 msec (165) 12 msec 3.1 sec

5. Conclusions

Toward establishment of a hydraulic simulation model for daily management of TSL, a new GPGPU-
accelerated two-dimensional inundation flow model is developed and efficacy of the model is investi-
gated. The developed model is applied to TSL and the inundation process for the 154 days in 2002 is
reproduced. The following conclusions are drawn based on the application.

• While the accuracy of the present model has not been fully verified because of the lack of ob-
served hydraulic data, by comparing with the observed data of water level and satellite remote
sensing analysis, it is found that the present model seems to successfully reproduce the reasonable
progress/regress of inundation in TSL.

• Even if a quite fine mesh of∆x = ∆y = 250m is used, the present model finishes the calculation
in an hour and a half although the conventional model spends almost one week. This fact suggests
that we can conduct computational analysis even every day. It is expected that the model can
contribute to advance a daily management of the lake.

166 ENGINEERING JOURNAL Volume 23 Issue 1, ISSN 0125-8281 (http://www.engj.org/)

DOI:10.4186/ej.2019.23.1.151

• The calculation speed of the present model surprisingly reaches to more than one hundred times
faster compared to the conventional model. By investing the breakdown of elapsed time, it is
confirmed that the reduction of the overhead of data transfer/output becomes to be a crucial
point to archive a satisfactory GPGPU-acceleration.

Acknowledgement

Authors thank the Mekong River Commission (MRC), the Tonle Sap Authority and Ministry of Water
Resources and the Meteorology Cambodia (MOWRAM) for providing the dataset and kind supports.
This research was supported by Science and Technology Research Partnership for Sustainable Devel-
opment (SATREPS), Japan Science and Technology Agency (JST)/Japan International Cooperation
Agency (JICA).

References

[1] C. Phoeurn and S. Ly, “Assessment of satellite rainfall estimates as a pre-analysis for water environ-
ment analytical tools: A case study for Tonle Sap Lake in Cambodia,” Engineering Journal, vol. 22,
pp. 229–241, 2018.

[2] M. E. Arias, T. A. Cochrane, T. Piman, M. Kummub, B. S. Caruso, and T. J. Killeen, “Quantifying
changes in flooding and habitats in the Tonle Sap Lake (Cambodia) caused by water infrastructure
development and climate change in the Mekong Basin,” J. Environ. Manag., vol. 112, pp. 53–66,
2012.

[3] MRC, “Overview of the hydrology of the Mekong Basin,” Mekong River Commission, Vientiane,
Lao PDR, Tech. Rep., 2005.

[4] S. Ly, L. Kim, S. Demerre, and S. Heng, “Flood mapping along the lower Mekong River in Cam-
bodia,” Engineering Journal, vol. 22, pp. 269–278, 2018.

[5] N. Bonheur and B. D. Lane, “Natural resources management for human security in Cambodia’s
Tonle Sap Biosphere Reserve,” Environ. Sci. Pol., vol. 5, pp. 33–41, 2002.

[6] R. Cheaa, C. Guoa, G. Grenouilleta, and S. Lek, “Toward an ecological understanding of a flood-
pulse system lake in a tropical ecosystem: Food web structure and ecosystem health,” Ecol. Model.,
vol. 323, pp. 1–11, 2016.

[7] A. Ohtaka, R. Watanabe, S. Im, R. Chhay, and S. Tsukawaki, “Spatial and seasonal changes of net
plankton and zoobenthos in Lake Tonle Sap, Cambodia,” Limnology, vol. 11, pp. 85–94, 2010.

[8] MRC, “Impacts on the Tonle Sap ecosystem, Technical note 10, assessment of basin-wide develop-
ment scenarios. In: Basin Development Plan Programme, Phase 2,” Mekong River Commission,
Vientiane, Lao PDR, Tech. Rep., 2010.

[9] M. Kummu, S. Tes, S. Yin, P. Adamson, J. Józsa, J. Koponen, J. Richey, and J. Sarkkula, “Water
balance analysis for the Tonle Sap Lake–floodplain system,”Hydrol. Process., vol. 28, pp. 1722–1733,
2014.

[10] H. Inomata and K. Fukami, “Restoration of historical hydrological data of Tonle Sap Lake and its
surrounding areas,” Hydrol. Process., vol. 22, pp. 1337–1350, 2008.

[11] WUP-JICA, “The study on hydro-meteorological monitoring for water quantity rules in Mekong
river basin (Final Report),” Japan International Cooperation Agency, Tech. Rep., 2004.

[12] MRCS/WUP-FIN, “Modelling Tonle Sap watershed and lake processes for environmental change
assessment,” Mekong River Commission, Vientiane, Lao PDR, Tech. Rep., 2003.

[13] MRCS/WUP-FIN, “Hydrological, environmental and socio-economic modelling tools for the
lower mekong basin impact assessment Technical Paper No. 1,” Mekong River Commission, Vi-
entiane, Lao PDR, Tech. Rep., 2008.

[14] J. Kandrot and E. Sanders,CUDAby example: an introduction to general-purposeGPUprogramming.
Addison-Wesley Professional, Boston, USA, 2010.

ENGINEERING JOURNAL Volume 23 Issue 1, ISSN 0125-8281 (http://www.engj.org/) 167

DOI:10.4186/ej.2019.23.1.151

[15] D. B. Kirk and W. W. Hwu, Programming massively parallel processors, third edition: a hands-on
approach. Morgan Kaufmann, Burlington, USA, 2016.

[16] A. Lacasta, M. Morales-Hernandez, J. Murillo, and P. Garcia-Navarro, “GPU implementation of
the 2D shallow water equations for the simulation of rainfall/runoff events,” Environ. Earth Sci.,
vol. 74, pp. 7295–7305, 2015.

[17] R. Vacondio, A. D. Palub, A. Ferrari, P. Mignosa, F. Aureli, and S. Dazzi, “A non-uniform efficient
grid type for GPU-parallel shallow water equations models,” Environ. Modeling Software, vol. 88,
pp. 110–137, 2017.

[18] SATREPS, “Establishment of Environmental Conservation Platform of Tonle Sap Lake,”
https://sites.google.com/site/satrepscambodia/, [Accessed: Jun, 2017].

[19] Y. Ding, Y. Jia, and S. S. Y. Wang, “Identification of Manning’s roughness coefficients in shallow
water flows,” J. Hydr. Eng., vol. 130, pp. 501–510, 2004.

[20] L. F. Richardson, “Atmospheric diffusion shown on a distance-neighbor graph,” Proc. Roy. Soc.
London, vol. A110, pp. 709–739, 1926.

[21] H. B. Fischer, E. J. List, R. C. Y. Koh, J. Imberger, and N. H. Brooks, Mixing in inland and coastal
waters. Academic Press, New York, 1979.

[22] F. Moukalled, L. Mangani, and M. Darwish, The finite volume method in computational fluid dy-
namics. Springer International Publishing, Switzerland, 2015.

[23] P. L. Roe, “Approximate riemann solvers, parameter vectors, and difference schemes,” J. Comput.
Phys., vol. 43, pp. 357–372, 1981.

[24] F. Benkhaldoun, I. Elmahi, and M. Seaid, “A new finite volume method for flux-gradient and
source-term balancing in shallow water equations,” Comput. Methods Appl. Mech. Engrg., vol. 199,
pp. 3324–3335, 2010.

[25] S. C. Medeiros and S. C. Hagen, “Review of wetting and drying algorithms for numerical tidal
flow models,” Int. J. Numer. Meth. Fluids, vol. 71, pp. 473–487, 2013.

[26] W. C. Thacker, “Some extent solutions to the nonlinear shallow-water wave equations,” J. Fluid
Mech., vol. 107, pp. 499–508, 1981.

[27] A. Jarvis, H. I. Reuter, A. Nelson, and E. Guevara, “Hole-filled SRTM for the globe version 4,”
available from the CGIAR-CSI SRTM 90m Database http://srtm.csi.cgiar.org, 2008 [Accessed:
Jun, 2017].

[28] Mekong River Commission and Ministry of Public Work and Transport of Cambodia, “Hydro-
graphic atlas Mekong River in Cambodia,” Mekong River Commission and Ministry of Public
Work and Transport of Cambodia, Tech. Rep., 1999.

[29] H. Fujii, H. Garsdal, P. Ward, M. Ishii, K. Morishita, and T. Boivin, “Hydrological roles of the
Cambodian floodplain of the Mekong River,” Intl. J. River Basin Management, vol. 1, pp. 253–266,
2003.

[30] Mekong River Commission, “MRC Data and Information Services Portal,” available from
http://portal.mrcmekong.org/index, [Accessed: Jun, 2017].

[31] J. V. Phillips and S. Tadayon, “Selection of Manning’s roughness coefficient for natural and con-
structed vegetated and non-vegetated channels, and vegetation maintenance plan guidelines for
vegetated channels in central Arizona,” Scientic Investigations Report 2006–5108, U.S. Geological
Survey, Tech. Rep., 2006.

[32] V. T. Chow, Open-channel hydraulics. McGraw-Hill Book Co., New York, 1959.
[33] B. Gao, “NDWI-a normalized difference water index for remote sensing of vegetation liquid water

from space,” Remote Sensing of Env., vol. 58, pp. 257–266, 1996.

Appendix

The two-dimensional shallow water equation (1) is discretized by the Roe approximate Riemann solver
[23, 24]. The upwind scheme with the characteristic speeds for the Riemann invariants is applied for

168 ENGINEERING JOURNAL Volume 23 Issue 1, ISSN 0125-8281 (http://www.engj.org/)

DOI:10.4186/ej.2019.23.1.151

the fluxes F,G and source terms S in Eq. (7). By assuming that Riemann invariantsw has the constant
value wij within each cell, the discretized formulations of F,G and S are derived as follows;

Fi− 1
2
,j =

1

2

(
F(wn

ij) + F(wn
i−1,j)

)
+Aabs

i− 1
2

(
wn

i−1,j −wn
ij

)
+Asgn

i− 1
2

Bi− 1
2
, (A-1)

Gi,j− 1
2
=

1

2

(
G(wn

ij) +G(wn
i,j−1)

)
+Cabs

j− 1
2

(
wn

i,j−1 −wn
ij

)
+Csgn

j− 1
2

Dj− 1
2
, (A-2)

1

∆x∆y

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

Sdxdy =
1

2

(
S(wn

i− 1
2
,j
) + S(wn

i+ 1
2
,j
)
)
+

1

2

(
S(wn

i,j− 1
2

) + S(wn
i,j+ 1

2

)
)

+

(
Asgn

i− 1
2

S(wn
i− 1

2
,j
)−Asgn

i+ 1
2

S(wn
i+ 1

2
,j
)

)
+

(
Csgn

j− 1
2

S(wn
i,j− 1

2

)−Csgn

j+ 1
2

S(wn
i,j+ 1

2

)

)
, (A-3)

supplemented with

Aabs
i− 1

2

=
1

2c∗

 −λ3|λ2|+ λ2|λ3| |λ2| − |λ3| 0
(|λ3| − |λ2|)λ3λ2 λ2|λ2| − λ3|λ3| 0

v∗(−λ3|λ2|+ λ2|λ3| − 2c∗|λ1|) v∗(|λ2| − |λ3|) 2c∗|λ1|

 , (A-4)

Asgn

i− 1
2

=
1

2c∗

 0 sgn(λ2)− sgn(λ3) 0
0 λ2sgn(λ2)− λ3sgn(λ3) 0
0 v∗(sgn(λ2)− sgn(λ3)) 0

 , (A-5)

Bi− 1
2
= −g

4

 0
(hni−1,j)

2 − (hnij)
2

0

 , (A-6)

Cabs
j− 1

2

=
1

2c∗∗

 −µ3|µ2|+ µ2|µ3| 0 |µ2| − |µ3|
u∗∗(−µ3|µ2|+ µ2|µ3| − 2c∗∗|µ1|) 2c∗∗|µ1| u∗∗(|µ2| − |µ3|)

(|µ3| − |µ2|)µ3µ2 0 µ2|µ2| − µ3|µ3|

 , (A-7)

Csgn

j− 1
2

=
1

2c∗∗

 0 0 sgn(µ2)− sgn(µ3)
0 0 u∗∗(sgn(µ2)− sgn(µ3))
0 0 µ2sgn(µ2)− µ3sgn(µ3)

 , (A-8)

Dj− 1
2
= −g

4

 0
0

(hni,j−1)
2 − (hnij)

2

 . (A-9)

The λm and µm represent the characteristic speeds of the Riemann invariants in x and y directions,
respectively;λ1 = c∗, λ2 = u∗ + c∗, λ3 = u∗ − c∗, µ1 = c∗∗, µ2 = v∗∗ + c∗∗, µ3 = v∗∗ − c∗∗, where
c∗ = (gh∗)1/2 and c∗∗ = (gh∗∗)1/2 are the phase speed of the shallow-water waves. (h∗, u∗, v∗) and
(h∗∗, u∗∗, v∗∗) are the Roe’s averages given by

h∗ =
1

2
(hnij + hni−1,j), u

∗ =

√
hniju

n
ij +

√
hni−1,ju

n
i−1,j√

hnij +
√
hni−1,j

, v∗ =

√
hnijv

n
ij +

√
hni−1,jv

n
i−1,j√

hnij +
√
hni−1,j

, (A-10)

h∗∗ =
1

2
(hnij + hni,j−1), u

∗∗ =

√
hniju

n
ij +

√
hni,j−1u

n
i,j−1√

hnij +
√
hni,j−1

, v∗∗ =

√
hnijv

n
ij +

√
hni,j−1v

n
i,j−1√

hnij +
√
hni,j−1

. (A-11)

ENGINEERING JOURNAL Volume 23 Issue 1, ISSN 0125-8281 (http://www.engj.org/) 169

