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Abstract. Logic macroprogramming paradigms for wireless sensor networks (WSNs) are 
rule-based abstractions for programming a network as a whole. Programmers only focus 
on the main objective of the network rather than the low-level implementation details on 
each node. Therefore, the low-level details are automatically handled by underlying 
middleware of the paradigms. To be viable, the middleware must efficiently handle the 
underlying issues as well as effectively minimize energy consumption and communication 
overhead. Not surprisingly, one major underlying issue in logic macroprogramming 
systems is deductive-query processing. In this paper, we analyze the characteristics of 
deductive-query processing and identify what have been overlooked in those previous 
approaches. Furthermore, we overview, analyze, and compare several recent approaches 
for deductive-query processing of logic macroprograms in WSNs. Our analysis reveals 
several important aspects that should be considered when designing such systems. 
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1. Introduction 
 
Wireless-Sensor-Network (WSN) programming is notoriously tedious and difficult. To simplify WSN 
programming, several novel programming paradigms have been proposed. Many paradigms focus on 
programming the WSN as a whole (i.e., Macroprogramming) [1, 2, 3, 4, 5, 6, 7, 8, 9] instead of multiple 
networked entities. In these macroprogramming paradigms, programmers only focus on the main objective 
of the network rather than the low-level implementation details of each node. 

Some paradigms simplify WSN programming into logic programming [10, 11, 12]. With these 
paradigms, WSNs can be programmed declaratively and imperatively.  

There are two classes of logic programming paradigms for WSNs: node-dependent and node-
independent. In the node-dependent approaches, local node behaviors must be explicitly logic-programmed 
[10]. Conversely, WSNs are logic macroprogrammed in the node-independent approaches [11, 12]. Logic 
macroprogrammers can focus on how to use sensed data from the WSN rather than how to explicitly 
specify the low-level details (e.g., local node behaviors, communications, query-processing techniques). The 
low-level details are automatically handled by the underlying middleware. To be viable, the middleware 
must minimize energy consumption and communication overhead due to limited resources of each sensor 
node. 

A logic macroprogram contains facts and rules with at least one sub-goal. Users can query the system 
for answers related to the written rules. Query processing in WSNs is not trivial. To satisfy that query, the 
run-time engine (i.e., middleware) attempts to match the query with a rule or a fact. This may result in 
cascading sub-queries because all sub-goals of the rule must also be matched. Furthermore, facts (e.g., 
current sensor readings) in WSNs are dynamic values. It is unlikely to know priori which nodes currently 
sense values that can match the query. Therefore, communication overhead is unavoidably incurred and 
efficient query processing is undoubtedly required. 

However, traditional query-processing approaches are designed for computers with plenty of power 
supply and processing power. In contrast, a WSN consists of several wireless sensing devices with 
extremely limited resources. As a result, novel query-processing mechanisms are required. Recently, we 
have proposed LogicQ [13], a semi-centralized approach for deductive sub-query processing. Later, Gupta 
et al. [7, 14] have presented various fully-distributed approaches. Nevertheless, no prior work indicates any 
design choice by considering the characteristics of logic macroprograms for WSNs. Consequently, in this 
paper, we point out these main characteristics as well as analyze and compare each query processing 
approach. 

The rest of the paper is organized as follows. Section 2 covers the related works about logic 
programming for WSNs. In section 3, we introduce the fundamental concept of logic macroprogramming 
in WSNs. We briefly describe various logic-macroprogramming approaches for WSNs in section 4 and our 
approach in section 5. Then, in section 6, we analyze the cost of each approach and evaluate in section 7. 
We discuss further optimization in section 8. Finally, section 9 concludes the paper. 
 

2. Related Work 
 
During these past few years, researchers have simplified WSN programming into logic programming. Chu 
et al. [10] have proposed Snlog for logic-programming low-level details of each node. Unlike Snlog, our 
work focuses on a global abstraction that conceals low-level details from programmers.  

The Semantic Streams framework [12] is a rule-based macroprogramming scheme with the semantic 
services. Services are described by a service description language whereas queries and rules are described by 
a logic-programming language. However, the Semantic Streams framework focuses on a service-oriented 
approach for wired sensor networks with plenty of power supply. In contrast, our work focuses on the 
deductive-query processing for wireless sensor nodes with extremely limited resources. 

Recently, Gupta et al. [11, 14] have proposed a deductive framework for logic-macroprogramming that 
shares the same objective with our work. They present distributed approaches for joining related facts to 
produce complete answers for a query. The main focuses of their approaches are load-balancing and 
extending the network lifetime. However, their design choices do not consider some essential 
characteristics of a logic-macroprogram for WSNs. Due to these characteristics, their approaches are 
unavoidably load-unbalanced and practically power-inefficient. We directly compare our approach with 
various approaches presented in their paper. 
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3. Fundamental of Logic Macroprogramming 
 
In this section, we describe the terminology of a logic macroprogram and a query-evaluation process. Our 
examples are quite simple but sufficiently general. The concept can be easily extended to more realistic 
complex applications as in [11, 12]. 
 
3.1. Terminology 
 
A logic-macroprogram consists of predicates, facts, rules, and queries. A predicate is a relation of data (or a table in 
the relational-database terminology). For example, a predicate temperature(NodeID, TemperatureValue) is a 
relation named temperature of two variable arguments: NodeID and TemperatureValue. 

A fact is a predicate whose arguments are all constants. For example, temperature(3,25) is a fact 
indicating that a node with ID 3 senses a temperature of 25 degree Celsius.  

A rule is a clause that specifies a condition to deduce new facts from existing facts in the system. A rule 
contains head and body parts. For example, the following rule represents a condition to deduce overThreshold 
facts of nodes that sense temperature and humidity over some certain thresholds. 

 
overThreshold(ID) : − temperature(ID,T), 

          humidity(ID,H), 
         T > 50,H < 30.                                                  (1) 

 
A query is a question that a user asks to retrieve data from the system. For example, ?-overThreshold(X) 

is a query for retrieving IDs of all nodes that satisfy the overThreshold(ID) rule. A query can be classified into 
two main classes; a query for retrieving all available answers and a query for existence checking. For 
instance, the above query ?-overThreshold(X) requests for all facts or deduced facts named overThereshold. 
Meanwhile, ?-overThreshold(5) only checks whether there exists such a fact or a deduced fact overThreshold(5) 
in the network or not. 

We note that our logic-macroprogram can contain rules that specify global constraints or relations of 
facts across the entire network. Conversely, a Snlog logic-program [10] can contain only rules that specify 
local constraints or relations of facts in the same node. 
 
3.2. Query Processing 
 
Query processing is the crucial procedure of a logic macroprogram run-time engine. When a user sends a 
query into the system, the run-time engine has to process that query and return desirable answers to the 
user. Existing approaches (section 4) do not consider some characteristics of WSN logic-
macroprogramming in their design. Hence, in this section, we explain the general concept of query 
processing and identify such main characteristics that affect the design of query processing mechanisms. 

When the system receives a query, the run-time engine looks for a rule whose head part matches with 
the query. Then, each sub-goal (each predicate in the body part) of that matched rule is evaluated. A query 
is satisfied (has at least one answer) if all sub-goals are satisfied. If there is at least one unsatisfied sub-goal, 
the run-time engine will attempt to match with the next rule that contains the same head part (but different 
body part). If there is no satisfying rule, a false boolean flag is returned to the user. Furthermore, if a query 
is an existence checking query, the run-time engine does not necessarily send any satisfying answer to a user. 
Only a boolean flag (true or false) is sent. 

In each rule, some variable arguments of one sub-goal may be bound in some previous sub-goals (two 
sub-goals share at least one identical variable argument). Consequently, some facts that seems to match a 
later sub-goal will not be eligible unless the shared argument is bound with the identical value as in the 
previous sub-goal. For example, from the above overThreshold(ID) rule, a fact humidity(5, 20) will not satisfy 
the second sub-goal if there is no fact temperature(5, _) whereby an underscore represents an arbitrary value. 
This process can be seen as joining of each sub-goal’s predicate like joining each table in a relational 
database. This observation leads to a system characteristic that some facts of the later evaluated sub-goals 
may not be useful and not necessary to send toward the query processing engine. 

Last but not least, after sending a query, a user generally waits for a reply from the system. Therefore, 
any answer must be sent back to a station where a user or a sub-process waits for a reply. This characteristic 
differentiates the query processing algorithm for logic-macroprograms from some algorithms in WSNs. 
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Those algorithms (e.g., time synchronization, localization) are understandably better when being fully 
distributed. However, the query processing for logic-macroprograms is not necessary to be fully distributed, 
given that all answers are routed toward the same node. 

In the next section, we describe each query processing approach and we raise some design issues 
related to the mentioned characteristics of logic-macroprograms for WSNs. 
 

4. Existing Approaches 
 
There are several approaches to process the query of logic macroprograms for WSNs. We classify them as 
follows. 
 
4.1. Centralized Processing Scheme 
 
The centralized approach has been mentioned in [13, 14] as a simple but inefficient approach. This 
approach is straightforward; all facts in the network must be periodically sent to the base station. Then, the 
run-time engine (at the base station) uses all collected facts to process each query. Alternatively, the run-
time engine collects facts only when a query is sent into the system. Only facts that match with each sub-
goal’s predicate are collected. Figure 1 illustrates this scheme. 

These fully centralized approaches are not appropriate for resource-limited WSNs because a vast 
amount of unrelated facts are sent to the base station. However, based on the observed characteristics of 
query processing, we can certainly improve this centralized approach into a much more energy-efficient one. 
We explain in details later (see section 5). 

 
Fig. 1. Centralized Processing Scheme. Nodes route all facts to the base station. 

 
 
4.2. Distributed Processing Scheme 

 
Various distributed approaches have been concluded and presented in [14]. The main concept of prior 
presented approaches is to join all sub-goals of a rule in the network without helping from the base station. 

A naive-broadcast approach (Fig. 2) is a simple distributed approach whereby each node floods every 
fact to the entire network. Later, the join process can be performed at any arbitrary node. This approach is 
undoubtedly infeasible for WSNs because a vast amount of memory is needed to store all facts. 
Furthermore, an excessive amount of energy is also wasted in flooding those facts. 
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Fig. 2. Distributed Processing Scheme – Naïve Broadcast Approach. Nodes broadcast all facts 

throughout a network. Each node has a complete set of all facts. 
 

 
In a Centroid Approach (CA), several centroid regions are constructed. Each centroid area only 

collects facts of only one sub-goal. Figure 3(a) demonstrates that each node routes its facts to 
corresponding centroid areas and a center node of each centroid area routes facts to collect at storage 
nodes in its centroid area. When performing a query evaluation, the process begins at the centroid area that 
collects facts of the first sub-goal. Then, partial results are sent to the second centroid area. These partial 
results are joined with collected facts of the second sub-goal to generate new partial results. Generated 
partial results are sent to the next area and so on. The complete results are generated at the last centroid 
area. Figure 3(b) demonstrates this process. In this approach, nodes around each centroid area unavoidably 
run out of energy early. 

 

 
(a) 

 
(b) 

 
Fig. 3. Distributed Processing Scheme – Centroid Approach. Dash circles represent centroids 

corresponding to fact types. Thick dash lines represent logical routing from one node/centroid 
area to another node/centroid area. Thin solid lines represent that center nodes c1, c2, and c3 
route facts to collect at storage nodes s1, s2, and s3 in their centroid areas. (a) Facts are collected 
at corresponding centroids. (b) Facts are routed to join with others from a centroid to another 
centroid. 
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The Perpendicular Approach (PA) has been proposed as a load-balanced and communication-efficient 
approach for WSNs [14]. PA consists of two phases: Storage Phase and Join-computation Phase. In the 
Storage Phase, every node in the network broadcasts all local facts to be stored on each node along the 
virtual horizontal grid line. After that, in the Join-computation Phase, each fact of the first sub-goal is 
disseminated along the vertical grid line to one end. That fact is later disseminated to another end to join 
with every related fact stored on the vertical grid line. 

PA has two join computation schemes: One-Pass Join Computation (OP) and Multi-Pass Join 
Computation (MP). In OP, nodes (along the vertical grid line) produce all possible partial results although 
some partial results do not satisfy the query-evaluation process. However, when that fact reaches another 
end, all complete results (generated by that fact) are stored along that vertical line in one turn. In the other 
hand, MP routes partial results from one end to another end in multiple turns. In the first turn, only one 
fact of the first sub-goal is routed to one end. Then, in the second turn, only partial results that are 
generated by joining that fact with facts of the second sub-goal are routed to other end. Finally, in the final 
turn, all complete results are generated. Figure 4 illustrates the PA approach. 

 

 
Fig. 4. Distributed Processing Scheme – Perpendicular Approach. Each node route its facts to store in 

every node along a horizontal line. Then, a node performs evaluation along a vertical line with 
one-pass or multi-pass. 

 
 
The PA approach seems to be load-balanced and energy-efficient. However, all generated complete 

results must also be sent back to the base station. To send all completed results (stored around the network) 
consumes much energy. Therefore, nodes around the base station also run out of battery early as in the 
centralized approach. Furthermore, even without an involvement in the query evaluation process, a node 
may still run out of energy faster than in the centralized approach. The reason is that all nodes have to 
broadcast several facts from other nodes along the horizontal grid line. 
 

5. Selective On-Demand Processing 
 
The pitfalls of both centralized and distributed schemes presented above are due to no consideration of the 
mentioned query-processing characteristics in their design.  

Given that all answers must be sent to the user at the base station, the design that only creates all 
complete results distributively stored in the network is not sufficient. Meanwhile, to naively collect all facts 
to be processed at the base station is not such a good design either. 

Recently, our initial work LogicQ [13] is designed as a globally deductive database system for WSNs. 
The LogicQ system allows a user to write a logic macroprogram and to send a query for answers. The 
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simulation result of LogicQ in TOSSIM is encouraging but out of scope for this paper (see [13] for more 
details). The query processing approach of LogicQ is Selective On-Demand Processing Approach (SA). 

SA processes a query at a central base station as in the centralized processing scheme. However, facts 
that cannot satisfy a current sub-goal are not selected or sent. The selection can be done by binding variable 
arguments of a current sub-goal with instantiated arguments. Then, an argument-bound sub-query is sent 
into the network. 

For example, from the rule (1), if a user sends a query ?-overThreshold(2) to the system, the run-time 
engine will attempt to bind the constant value with all corresponding arguments in the body part. 
Consequently, the body part becomes temperature(2,T), humidity(2,H), T > 50, H < 30. Then, the run-time 
engine sends sub-queries ?-temperature(2,T) and ?-humidity(2,H) into the network. The temperature and 
humidity facts are sent back to the base station only when the first argument is 2. Meanwhile, all other facts 
(e.g., temperature(5,30), humidity(4,20)) are not sent because those facts do not possibly satisfy the query 
(according to the mentioned characteristic of query processing). Thus, this processing approach minimizes 
unnecessary spent energy. 

Additionally, we can use another distinguished characteristic about sub-queries to further improve the 
energy efficiency of the system. As mentioned before, sub-queries can be classified into two types: fact-
existence checking and all-answers retrieving. Understandably, we need to disseminate all-answers retrieving 
queries to the entire network. Conversely, it will not be necessary for a node to further disseminate the fact-
existence checking sub-query if that node has a fact to satisfy the sub-query. This sub-query can be 
suppressed because one fact is sufficient to confirm the existence. Therefore, only one answer is sent back 
to notify that the fact exists. Finally, only selected facts are processed by the base station. Figure 5 
demonstrates this scheme with fact-existence checking. 

 

 
Fig. 5. Selective On-demand Processing Scheme. In fact existence checking, sub-queries do not necessary 

to reach all nodes and can be suppressed. 
 
 
This query processing mechanism is simple but efficient. We compare this approach with others in the 

next section.  
 

6. Cost Analysis 
 
In this section, we analyze the communication cost of three processing schemes: centralized, distributed, 
and selective on-demand schemes. In all cases, we assume uniform distribution of facts in the network of 

size M nodes. iG  represents the number of all available facts of the thi  sub-goal. 
21ii  is a selectivity 

factor that is a fraction of the number of joined results to the number of all possible combinations between 

facts of the thi1
 sub-goal and facts of the  thi2

 sub-goal. 
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6.1. Cost of Centralized Processing Scheme 
 
Understandably, in centralized scheme, every fact in the network must be collected at the central base 
station. Therefore, the total communication cost is  
 

,||
1





n

i

iCP GDMC                                                          (2) 

 

where M is the cost of query broadcasting which is equal to the number of nodes in the network and D  is 
an average distance from arbitrary node to the base station. 
 
6.2. Cost of Distributed Processing Scheme 
 

In this scheme, we refer to [14] for all base equations but we use iG  instead of iR  to represent the 

number of available facts of the thi  sub-goal to comply with our terminology for comparison purpose. 

However, those equations in [14] are about the cost of producing answers from only one tuple of the first 
sub-goal. Their equations do not include the cost of sending all answers back to the base station. Therefore, 
we have completed their equations as follow. 
 
6.2.1. Cost of Naïve Broadcast Approach 
 
Although, the naïve broadcast approach is infeasible in practice for WSNs, it can be a base case for 
comparison. 
 

,||
1





n

i

iNB GMC                                                           (3) 

 
In the naïve broadcast approach, all facts are flooded throughout the network. Hence, the cost of this 

approach is roughly a product of the network size and the total number of facts. 
 
6.2.2. Cost of Centroid Approach 
 
The cost of the centroid approach presented in [14] is only the cost of finding answers generated from only 
one fact from the first sub-goal. They do not include the cost of routing the facts to store on centroid 
storage areas of other sub-goals.  

Let iD  be the average distance of each fact of the thi  sub-goal to the center node of that sub-goal’s 

centroid area. r is memory capacity of each node. The cost of routing the facts to store on the centroid 

storage areas is   


n

i iiiStoreCA rGDGC
1_ /21 , where rGi / is the minimum number of nodes 

required to store iG  facts. A number of facts of a sub-goal iG  is routed to the center node with the 

average distance iD .  rGi /21  is the cost of searching for nodes with enough memory within the 

centroid area. The searching procedure is that the searching node broadcasts one storage-request message 

to neighbors, there are at least  rGi /  nodes response with sufficient-storage messages. Then the 

searching nodes routes rGi /   messages to  rGi /  nodes to store facts which are aggregately included in 

each message. Thus, the total cost of searching is at least  rGi /21  . Afterwards, each joined partial 

result is routed from the current sub-goal centroid area to the next sub-goal centroid area on an average of 
d hops away. Then, the final complete results are sent back to the base station. 

Therefore, the overall cost of the centroid approach is 
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fD  is the distance in hop(s) from the centroid area of the last sub-goal to the base station. 1G  is a 

multiplier to include every possible answer of the first sub-goal. 
 
6.2.3. Cost of Perpendicular Approach 

 
In the perpendicular approach, each fact must be routed to store on nodes along the horizontal line. 

hL  is an average hop length of the horizontal line. Thus, the cost of storage is  


n

i ihStorePA GLC
1_ . 

For both one-pass and multi-pass perpendicular approaches, all complete results are scattered around the 
network. Therefore, the cost of routing all complete results to the base station is 

  


n

i inii iisultPA GDC
1,1Re_

21 21
 , where D  is an average distance in hop(s) from arbitrary node 

to the base station. 

a) One-Pass Perpendicular Approach 
For the one-pass perpendicular approach, each fact of the first sub-goal is routed to one end as a 

starting point. Then, it is routed L hops along the vertical line. All generated partial results except complete 
results are also routed along the vertical line from their origin nodes to another end. Therefore, the overall 
cost of the one-pass perpendicular approach is  
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                        (5) 

 

 nN i

l  is the number of partial results generated at a node that is l hop(s) away from the starting node 

at one end.  

n  is the size of a partial result. For example, if a partial result is generated from only two first sub-

goals, n  is two. 
 

b) Multi-pass Perpendicular Approach 

For the multi-pass perpendicular approach, in the 
thi  round, partial results of size i are routed in L 

hops along the vertical line from one end to another end and new generated partial results of size i + 1 are 
routed in average L/2 hops from their origin nodes to another end to prepare for the next round. 

Thus, the overall cost of multi-pass perpendicular approach is 
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In both one-pass and multi-pass perpendicular approaches, 1G  is also a multiplier to include every 

possible answer of the first sub-goal like in the centroid approach. 
 
 
 
 

6.3. Cost of Selective On-Demand Processing Scheme 
 
In our Selective On-Demand scheme, we perform the join-computation process at the central base station 
and distributively collect only needed facts from the network. 

In retrieving all satisfying answers, our scheme incurs broadcasting a sub-query for each sub-goal. 
However, only the selected facts (that satisfy the constraints caused by all previous sub-goals) for that sub-
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query are sent back to the base station. In other words, previous satisfied sub-goals can suppress many 
unrelated facts in the network. 
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Noticeably, our approach already includes the cost of producing all answers and the cost of sending all 

answers to the base station.  
In [13], we have proposed two optimization techniques: superset caching and look-ahead data filtering. 

For superset caching, if a query requests for answers that are a subset of previous cached answers, the 
runtime engine is able to response with answers immediately without cost of searching in a network. For 
look ahead-data filtering, if a sub-goal can be bound with a constraint or a constant argument, they can be 
broadcasted together to filter out unnecessary answers. We refer readers to [13] for more details.   

If we take these optimization techniques into account, the cost in Eq. (7) will be reduced to  
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where nji  , from the look-ahead data filtering, ij  is the probability that a variable argument of 

the 
thi  sub-goal can be bound with a constant argument of the 

thj  sub-goal. From the superset caching, 

tp  is 0 if a query is in the superset cache before flushing.  Otherwise, tp is 1. The value of the probability 

ij  depends on queries and facts in an environment. Therefore, this probability value can be computed by 

statistical analysis. One feasible solution is analyzing the expected value in advance. Another feasible 
solution is collecting data for a while and deriving such a value with statistics from collected information.  

 

7. Evaluation 
 
Our Selective On-Demand Approach (SA) certainly performs better than the centralized and the naïve 
broadcast approaches do. Meanwhile, the Multi-Pass Perpendicular Approach outperforms the Centroid 
Approach and the One-Pass Perpendicular Approach when the selectivity factor is not too high [14]. 
Therefore, to find the best approach, we can simply compare our approach (SA) with MP. 

We begin by analytically comparing SA and MP in section 7.1. Then, we conduct a sensitivity analysis 
to both approaches in section 7.2 – 7.4 to show how a parameter variation affects the performance. In each 
analysis, we set up an experiment with 25 nodes, 3 sub-goals, and 0.1 selectivity factor. We vary one 
parameter in each analysis to inspect the effect.   

 
7.1. Analytical Comparison  

 

In this section, we prove that SA performs better than MP in most cases. Formally, MPSA CC   when 

iGL   and LD   where L is the number of hops along the vertical line, iG  is the number of 

available facts of the thi  sub- goal, and D  is an average distance from arbitrary node to the base station. 

Proof. We assume 1
1

 

n

i iG  (there is at least one combination of facts in the network). We note 

that if the 
thi  sub-goal has no related fact, we assign 1iG  to prevent a zero production. From the MPC  

Eq. (6), we expand sultPAC Re_  and StorePAC _  to Eq. (9). Then, the equation is rearranged into the three-

term Eq. (10) for comparison.  
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From Eq. (7), M in SA equals to hLL  in MP. Thus, we obtain the following Eq. (11). 
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We assume iGLi  : . This assumption is always valid in a homogeneous sensor network and 

valid in most cases of a heterogeneous sensor network. Therefore, we obtain Eq. (12) and derive it into the 
three-terms Eq. (13) for comparison. 
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Finally, we compare Eq. (10) with (13). If LD   (a general case in WSNs), each term in (13) is less 
than its corresponding term in (10), respectively. Therefore, we conclude that 

 

 MPSA CC                                                                  □ 

 

We note that even when iGL   or LD   (the assumptions are broken), SAC  is still mostly lower 

than MPC . SAC  is greater than MPC  only when iG  is much lower than the number of nodes in a 

network. In other words, SAC  is greater than MPC  only when there are a few (satisfiable and unsatisfiable) 

facts in a network. In Fig. 6, these assumptions are invalid with different network sizes (5x10, 13x6, and 

9x11 nodes) where n = 3 and selectivity factors = 0.1. We also notice that, when SAC  is greater than MPC , 

the cost difference is not significant. 
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Fig. 6. Cost when assumptions are invalid. 

 
 

7.2. Effect of Network Size  
 
The effect of the network size indicates how scalable an approach is. We vary the network size and 
calculate the number of all transmitted messages. In Fig. 7, SA’s cost scales linearly because there are only 
new transmissions from added nodes. Conversely, MP’s cost exponentially grows. When the number of 
nodes increases, there are more possible answers. Therefore, partial results in MP also increase. MP has to 
send these partial results multiple turns until the complete results are constructed. These increased partial 
results will also be routed in more hops as the network size increases. Consequently, transmitted messages 
exponentially grow with the network size. 

 

 
Fig. 7. Effect of network size. 
 
 
7.3. Effect of Selectivity Factors 
 
In Fig. 8, the higher selectivity factors result in more partial results generated. Similar to the effect of the 
network size, MP grows exponentially whereas SA is linearly affected. MP is exponentially affected by an 
increasing number of partial results. However, in SA, the increasing number of partial results can be viewed 
as there are additional nodes in the network. 
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Fig. 8. Effect of selectivity factor. 
 
 
7.4. Effect of the Number of Sub-goals 
 
Finally, in Fig. 9, we vary the number of sub-goals to evaluate how the complexity of a rule affects the 
performance. SA grows linearly after the first sub-goal. In SA, all nodes send their facts for the first sub-
goal whereas only some nodes send their facts for the later sub-goals. In the other hand, MP grows 
exponentially for the first three sub-goals due to the increasing number of partial results. After the third 
sub-goal, the exponential cost component starts to disappear and the cost becomes linear. The reason is 
that, with 0.1 selectivity factors, later sub-goals have very low probabilities to produce next partial results 
that are also constrained by previous sub-goals’ values. 
 

  
Fig. 9. Effect of the number of sub-goals. 
 
 

8. Discussion on Optimization 
 

In our Selective On-Demand Approach, we propose how to process a query by considering the 
characteristics of logic-macroprograms for WSNs. However, it is of a particular interest to explore how this 
approach can be further optimized. For instance, several rules usually contain a sub-goal to constrain a 
variable argument with a certain range of values. An example body of such a rule is subgoal1(X, Y), 
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subgoal2(Y,Z), Y < 50. In this situation, we can simply send the constraint Y < 50 along with the sub-query 
subgoal1(X, Y). Only facts subgoal1 with the second argument that is smaller than 50 are selected to be sent 
as answers. Others are suppressed. This optimization technique is certainly applicable to most approaches.  

As mentioned before, in SA, an existence-checking query can be suppressed by a node that already 
contains a satisfying fact. This suppressing node does not need to further disseminate the query to nodes 
under its sub-tree. The cost saving of this optimization technique is essentially the number of suppressed 

messages (or the number of nodes under the sub-tree rooted at the suppressing node). Let 
d

iC  be the 

number of nodes in the sub-tree whose root node i is on the 
thd  level depth. Thus, the cost saving can be 

formally expressed as  
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nodeleafaisinodeif
C

iSj

d

j

th

d

i  

 
We believe that there are open research areas in optimizing either centralized or distributed approaches. 

However, in this paper, we learn that neither a distributed nor a centralized approach overcomes the other 
without considering the characteristics of logic macroprograms for WSNs (as seen in the previous section). 
Regardless of the approaches, the complete results must be sent back to a waiting user at the base station. 
This results in heavy loads on nodes around the base station. To avoid the heavy loads and to improve the 
performance, the load-balanced tree protocol [15] can be applied. 
 

9. Conclusion 
 
In this paper, we examine various query processing schemes in logic macroprograms for WSNs. Prior 
works are fully distributed to avoid drawbacks of the centralized approach. However, we notice that all 
complete results produced by those distributed approaches are still scattered in the network. Eventually, 
those results must be sent back to a sink node or a base station. Hence, being fully distributed may not be 
advantageous as normally perceived.  

We present the Selective On-Demand Processing scheme that combines benefits of centralized and 
distributed approaches. We also analyze and compare the communication cost of our approach with that of 
previous approaches. Our analysis reveals several important aspects that should be considered when 
designing a logic-macroprogramming system for WSNs. There is room to optimize the query processing 
for a logic-macroprogramming system to further reduce the communication cost and to balance the 
network load. We believe that a further deeper analysis with recursive queries can be extended from this 
work. A recursive rule can be expanded to a long-tail non-recursive query that consists of several repeated 
predicates. However, the exact numbers of predicates is now known a priori and depends on environmental 
data to be collected. The stochastic analysis can be one of feasible solutions for further deeper analysis. 
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