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Abstract. Precipitable water (PW) is an important variable in the climate system. 
Interferometric synthetic aperture radar (InSAR) is a powerful remote sensing technique 
for measuring the topography and deformation of the Earth’s surface. However, variations 
in atmospheric water vapor content affect the accuracy of InSAR measurements. 
Therefore, it is important to understand the distribution of PW to mitigate atmospheric 
effects on remote sensing data. Herein, we estimated the PW distribution with high spatial 
resolution using numerical prediction data and digital elevation model (DEM) data from 
the Kanto region of Japan. We estimated the PW distribution at a resolution of 90 m from 
mesoscale model grid point value data while accounting for the difference in surface 
elevation within pixels using DEM data with a resolution of 90 m. The PW distribution at 
90-m resolution could be estimated using the proposed method with good accuracy (root-
mean-square difference within 4.0 mm) throughout the year. The proposed method 
provides high-resolution information on atmospheric water vapor content and its variation 
at 3-h intervals. This method is expected to be applicable in climate research and for the 
atmospheric correction of remote sensing data, which can improve the accuracy of remote 
sensing measurements. 
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1. Introduction 
 
Precipitable water (PW) is the total atmospheric water vapor contained in a vertical column from the 
Earth’s surface to the top of the atmosphere. PW is an important variable in the climate system, 
hydrological systems, and terrestrial ecosystems. For example, atmospheric water vapor is one of the 
greenhouse gases that lead to global warming. Water vapor influences the partitioning of incoming solar 
radiation into latent and sensible heat fluxes through its effects on stomatal conductance and 
evapotranspiration [1]. In turn, this process feeds back into the Earth’s energy and water budgets [1]. 
According to model simulations, increased atmospheric water vapor content generates the single largest 
positive feedback on surface temperature and is a major factor in precipitation augmentation at middle and 
high latitudes [2]. Therefore, it is necessary to monitor changes in atmospheric water vapor content to 
validate the large feedback caused by atmospheric water vapor in climate models and to detect global 
warming [2]. 

Atmospheric water vapor content is also critical for atmospheric correction, which is the most 
important step in the pre-processing of remote sensing data. Interferometric synthetic aperture radar 
(InSAR) is a powerful remote sensing technique for measuring the topography and deformation of the 
Earth’s surface. These measurements are based on the phase differences in the signal backscattered by the 
land surface at two acquisition dates after correcting for orbital contributions [3]. However, variations in 
atmospheric water vapor content affect the accuracy of InSAR measurements. The dominant source of 
error in InSAR measurements is differential propagation path delay caused by the large spatial and temporal 
variability in atmospheric water vapor content [4, 5]. This variability is easily misinterpreted as a surface 
deformation, thus limiting the accuracy of InSAR measurements [5]. Therefore, high-resolution 
information on atmospheric water vapor content and its variation with time are crucial to mitigate the 
effects of wet tropospheric path delay variations on InSAR interferograms [6]. 

PW is mainly measured using radiosondes over land; however, these instruments are limited in their 
ability to make continuous measurements of PW with good spatial resolution [7]. Although PW can also be 
measured by ground-based global positioning system (GPS) data [8-10], this method results in poor 
temporal and/or spatial resolution [11]. Compared with traditionally used ground-based meteorological 
observations, space-based monitoring provides high spatial resolution over large areas of the Earth’s 
surface and is particularly useful in isolated locations where meteorological observation stations are rare 
[12]. Space-based monitoring is an effective way of measuring the global distribution of water vapor with a 
spatial resolution much closer to the resolution of SAR images compared with the station spacing of GPS 
networks [13]. However, space-based monitoring is sensitive to the presence of clouds in the field of view 
[13], and it is not always available at the time corresponding to SAR data acquisition [3]. Current numerical 
weather prediction (NWP) models can provide the high spatial resolution necessary to reproduce realistic 
distributions of water vapor. Therefore, the water vapor fields produced by NWP are able to eliminate 
some of the problems described above [11]. 

Consistent time series of PW vapor are important in meteorology and climate research [14] and in 
remote sensing. The purpose of this study is to estimate the PW distribution at high spatial resolution using 
NWP and digital elevation model (DEM) data from the Kanto region of Japan. Although the spatial 
resolution of NWP data is 5 km at the surface and 10 km at each barometric surface, we estimated the PW 
distribution with a resolution of 90 m by accounting for the differences in surface elevation within pixels 
using DEM data with a resolution of 90 m. 
 

2. Data Description 
 
Mesoscale model (MSM) grid point value (GPV) data from the Japan Meteorological Agency (JMA) were 
used as numerical prediction data in this study. The spatial resolution of MSM GPV data is 5 km at the 
surface level and 10 km at each barometric surface; the corresponding temporal resolution is 1 and 3 h, 
respectively (Table 1). Reconstructed MSM GPV data are provided by the Research Institute for 
Sustainable Humanosphere (RISH) of Kyoto University in Japan. To represent the most probable 
atmospheric state, the reconstructed MSM GPV data set, an archive data obtained by reconstructing the 
original MSM GPV data, is used. This archive data comprises the initial value data obtained by the objective 
analysis and the predicted data using the forward initial value [15]. We downloaded the 2014 MSM GPV 
data set from RISH [15]. 
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Table 1. Description of MSM GPV data. 
 

Variable Level 
Spatial 
resolution 
(km) 

Temporal 
 resolution 
(h) 

Air temperature (K) Surface 5  1 
Relative humidity (%) Surface 5  1 
Surface pressure (hPa) Surface 5  1 
Sea-level pressure (hPa) Surface 5  1 
Air temperature (K) 16 pressure levels* 10  3 
Relative humidity (%) 12 pressure levels** 10  3 

 
* 16 pressure levels: 1000, 975, 950, 925, 900, 850, 800, 700, 600, 500, 400, 300, 
 250, 200, 150, 100 hPa. 
** 12 pressure levels: 1000, 975, 950, 925, 900, 850, 800, 700, 600, 500, 400, 300 hPa. 
 

We used Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital 
Elevation Model (GDEM) data as the DEM data. These data are generated using stereo-pair images 
collected by the ASTER instrument onboard Terra [16]. The original spatial resolution of ASTER GDEM 
data is approximately 30 m (1 arcsecond); in this study, the data were resampled to a spatial resolution of 90 
m in order to reduce processing time. ASTER GDEM is shown in Fig. 1 as the base map. 

The PW values estimated from radiosonde observation and ground-based GPS data were used to 
validate the PW estimated from MSM GPV data. Radiosonde observation was conducted twice a day at 
0000 UTC and 1200 UTC at Tateno in the Kanto region of Japan (Fig. 1). The PW derived from 
radiosonde observation data at Tateno in 2014 was downloaded from the “Atmospheric Soundings” 
website of the University of Wyoming [17]. The PW at the GPS stations can be estimated from the travel-
time delays of global GPS signals between satellites and ground-based receivers if the temperature and 
pressure at the GPS stations are known [18]. According to previous studies [19, 20], we calculated the GPS-
derived PW at 3-h intervals in 2014 from the atmospheric delay data provided by the Geospatial 
Information Authority of Japan and the temperature and pressure at each GPS station interpolated from 
the observed values of JMA’s Automated Metrological Data Acquisition Systems. 
 

 
 
Fig. 1. Locations of the study area along with radiosonde and GPS stations. The base map shows the 
elevation, which was mapped using ASTER GDEM data (Validation site A: TSUKUBA3; Validation site B: 
SHIOBARA; Validation site C: KARUIZAWA; Validation site D: SUSONO1). 
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3. PW Estimation from Numerical Prediction Data 
 
3.1. PW Calculation 
 
The integrated water vapor content was derived using the following formula [21]: 
 

    0,1 0 1 1,2 1 2

100
PW q P P q P P

g
       , (1) 

 
Where PW is precipitable water (mm), qi,i+1 is the mean specific humidity (kg kg−1) between a layer bounded 
by pressures Pi and Pi+1 (hPa), and g is acceleration due to gravity. 
 
3.2. PW Estimation from MSM GPV and DEM Data 
 
If we can estimate the specific humidity at each barometric surface of MSM GPV data, PW can be 
calculated using Eq. (1). 

The specific humidity at pressure level Pn can be calculated using Eq. (2): 
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where qn is the specific humidity (kg kg−1) at pressure level Pn and ePn is the water vapor pressure (hPa) at 
MSM GPV pressure level Pn. 

The water vapor pressure at pressure level Pn can be calculated using Eq. (3): 
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where ePn is the water vapor pressure (hPa) at pressure level Pn, RHPn is the relative humidity (%) at pressure 
level Pn, and en,sat is the saturation water vapor pressure (hPa) at pressure level Pn. 

The saturation water vapor pressure at pressure level Pn can be calculated using Eq. (4) [22]: 
 

   , 6.1094 exp 17.625 243.04
n n nP sat P Pe T T   , (4) 

 
where ePn,sat is the saturation water vapor pressure (hPa) at pressure level Pn and TPn is the air temperature 
(°C) at pressure level Pn. 

MSM GPV data include the relative humidity and air temperature at 12 pressure levels (1000–300 hPa); 
thus, we can calculate PW between the surface and the 300 hPa pressure level using Eqs. (1)–(4). Because 
the spatial resolution of MSM GPV data is 5 km at the surface and 10 km at each barometric surface level, 
we estimated the PW distribution at a resolution of 5 km from MSM GPV data using Eq. (5): 
 

      1000 1000 975 400 300
1000 1000 975 400 300

100

2 2 2

S
S

q q q q q q
IWV P P P P P P

g

   
        

, (5) 

 
where IWV is the integrated water vapor content between the surface and the 300 hPa pressure level (mm), 
PS is the surface pressure (hPa), and qS is the specific humidity (kg kg−1) at the surface level. In this study, 
the IWV between the surface and the 300 hPa pressure level is taken as PW. 

We now estimate the PW distribution at 90-m resolution from MSM GPV data by accounting for the 
difference in surface elevation within pixels of MSM GPV data using ASTER GDEM data with 90-m 
resolution. 
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Here, we focus only on a grid of MSM GPV data (Gmn) and a DEM pixel (Dij) within Gmn. The PW of 
Dij can be calculated from the specific humidity and surface pressure of Dij, which can be estimated from 
both the MSM GPV and DEM data. 

Assuming that air is an ideal gas and that the temperature lapse rate is 6.5 K km−1, the elevation of Gmn 
(HGmn) can be calculated using the following relation [23, 24]: 
 

 

1
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, (6) 

 
where TGmn, PGmn, and PSL,Gmn are the surface air temperature (°C), surface pressure (hPa), and sea-level 
pressure of Gmn (hPa), respectively. 
The surface pressure of Dij (PDij), whose elevation is hDij (m), can be expressed using TGmn, PSL,Gmn, and hDij as 
[23] 
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where TSL,Gmn is the sea-level air temperature (°C), which can be derived from Eq. (8) as 
 

 , 0.0065
mn mn mnSL G G GT T H  . (8) 

 
The specific humidity of Dij (qDij) can be calculated from Eq. (9) as [25] 
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From Eqs. (3) and (4), the saturation water vapor pressure of Dij (eDij) can be calculated from Eq. (10) 

as 
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where TDij is the sea-level air temperature (°C), which can be derived from Eq. (11): 
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Finally, if PDij > 1000 hPa, we assume that RHDij = RHGmn, and the specific humidity of Dij (qDij) can 

then be estimated using Eqs. (7)–(11). If PDij ≦ 1000 hPa, we assume that qDij = qPn,Gmn; qPn,Gmn is the specific 
humidity of Gmn at pressure level Pn, which is the nearest barometric surface of PDij. 

For PDij > 1000 hPa, the PW of Dij can be estimated by 
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For PDij ≦ 1000 hPa, the PW of Dij can be estimated by 
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 (P2 < P1 < PDij ≦ 1000). 
 
3.3. Validation of Estimated PW 
 
According to the procedure explained in Section 3.2, the 90-m-resolution PW was estimated at 3-h intervals 
using 2014 MSM GPV and ASTER GDEM data. From this point forward, we refer to this estimated PW 
as MSM-refined PW. To validate MSM-refined PW, we extracted the MSM-refined PW values at the pixels 
where Tateno and TSUKUBA3 are located, and compared them with radiosonde PW at Tateno and GPS 
PW at TSUKUBA3. TSUKUBA3 is the nearest GPS station to Tateno, and the distance between 
TSUKUBA3 and Tateno is approximately 6 km. The annual biases and root-mean-square (RMS) 
differences between MSM-refined PW and radiosonde PW at Tateno in 2014 were calculated at 0000 UTC 
and 1200 UTC. The biases at 0000 UTC and 1200 UTC in 2014 were −0.3 and −0.5 mm, respectively, and 
the RMS differences were 3.0 and 3.3 mm, respectively. The left column of Fig. 2 shows the scatter plots of 
MSM-refined PW and radiosonde PW values at Tateno. The center column of Fig. 2 shows the scatter 
plots of MSM-refined PW and GPS PW at TSUKUBA3; the RMS differences at 0000 UTC and 1200 UTC 
were 1.7 and 1.4 mm, respectively. The right column of Fig. 2 shows the scatter plot between GPS PW at 
TSUKUBA3 and radiosonde PW at Tateno; the RMS differences at 0000 UTC and 1200 UTC were 3.0 and 
3.4 mm, respectively. As shown in Fig. 2, although some large differences were observed, MSM-refined PW 
generally showed good agreement with GPS- and radiosonde-based PW throughout the year. Because no 
large differences were observed between MSM-refined PW and GPS PW, the large discrepancies between 
MSM-refined PW and radiosonde PW are likely attributed to error in the radiosonde measurements. 
 

 
 
Fig. 2. Scatter plots among MSM-refined PW, GPS PW, and radiosonde PW in 2014 (upper row: 0000 
UTC; lower row: 1200 UTC): left column, scatter plots between MSM-refined PW and radiosonde PW at 
Tateno; center column, scatter plots between MSM-refined PW and GPS PW at TSUKUBA3, which is the 
nearest GPS station to Tateno; and right column, scatter plots between GPS PW at TSUKUBA3 and 
radiosonde PW at Tateno. 
 

4. Elevation Correction 
 
Although the accuracy of MSM-refined PW depends on the accuracy of MSM GPV data, we can estimate 
the PW distribution at 90-m resolution using the proposed procedure with nearly the same accuracy as 
radiosonde PW and GPS PW. However, the Tateno and TSUKUBA3 sites are located in a flat plain in a 
region of low elevation, and Bock et al. [21] stated that the largest biases are obtained at stations in 
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mountainous regions because of the large differences in altitude between the real topography and its 
representation in the weather forecasting model. Figure 3 shows scatter plots between MSM-refined PW 
and GPS PW at validation sites (SHIOBARA, KARUIZAWA, and SUSONO1 at elevations of 566.8, 
947.7, and 1453.9 m, respectively; Fig. 1) in 2014. The biases between MSM-refined PW and GPS PW at 
SHIOBARA were 2.7 and 3.4 mm at 0000 UTC and 1200 UTC, respectively. The biases at KARUIZAWA 
were 6.0 and 6.5 mm at 0000 UTC and 1200 UTC, respectively, and those at SUSONO1 were 8.4 and 8.7 
mm, respectively. Figure 3 indicates that the bias was greater (more positive) in the higher-elevation region; 
that is, MSM-refined PW was overestimated in the higher-elevation region. Thus, we calculated the monthly 
bias between MSM-refined PW and GPS PW at each GPS station and examined the relationship between 
the bias and elevation of the GPS stations. Figure 4 shows the scatter plots between the bias and elevation 
of the GPS stations. The left and right panels show the relationships between the biases and elevations of 
GPS stations in January and August of 2014, respectively. The data points represent the monthly bias at 
each GPS station. Table 2 shows the monthly results from linear regression between the biases and 
elevations at GPS stations. The results indicate that the bias of MSM-refined PW was correlated with 
elevation. Because the atmospheric water vapor content decreases with increasing elevation [26, 27], large 
elevation differences between the MSM topography and the GPS stations may lead to larger biases. 
Therefore, the bias attributed to elevation difference should be removed via elevation correction to 
improve the accuracy of MSM-refined PW. 
 

 
 
Fig. 3. Scatter plots between MSM-refined PW and GPS PW at validation sites in 2014 (upper row: 0000 
UTC; lower row: 1200 UTC). 
 

 
 
Fig. 4. Relationships between bias and elevation at GPS stations in January (left) and August (right) of 
2014. The lines are linear regressions. 
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4.1. Elevation Correction 
 
Elevation correction was conducted using the slopes of linear regression between the biases and elevations 
of the GPS stations (Table 2). Because the bias of MSM-refined PW was positively correlated with 
elevation, the elevation correction can be formulated as follows: 
 

 , ij ij ijEC D D m DPW PW a h    (14) 

 
where PWEC,Dij is the PW of Dij after elevation correction, PWDij is the PW of Dij without elevation 
correction, and am is the monthly slope of the linear regression between the biases and elevations of GPS 
stations, which is statistically significant. In this study, we assumed the slope to be constant within a given 
month. 
 
Table 2. Monthly results of linear regression between the biases and elevations of GPS stations. 
 

Month Slope (am) Intercept R2 

Jan. 1.89×10-3 * −0.43 0.53 
Feb. 2.33×10-3 *  −0.09 0.63 
Mar. 2.92×10-3 * 0.23 0.73 
Apr. 3.73×10-3 * 0.09 0.80 
May 5.65×10-3 * −0.31 0.88 
Jun. 8.97×10-3 * 0.12 0.90 
Jul. 1.15×10-2 * −0.25 0.93 
Aug. 1.25×10-2 * −0.70 0.95 
Sep. 7.86×10-3 * −0.24 0.89 
Oct. 6.00×10-3 * −0.32 0.86 
Nov. 4.38×10-3 * −0.47 0.83 
Dec. 2.16×10-3 * −0.66 0.57 

 *: p-value < 0.001. 
 
4.2. Validation of Elevation-Corrected PW 
 
According to the procedure explained in Section 3.2, MSM-refined PW in 2014 was estimated at 3-h 
intervals and then corrected for elevation using Eq. (14). The elevation-corrected MSM-refined PW values 
were compared with the GPS PW at each GPS station. Figures 5 and 6 show the scatter plots between 
MSM-refined PW with/without elevation correction and GPS PW at the validation sites at 0000 and 1200 
UTC in 2014, respectively. These figures show that the MSM-refined PW at each validation site agreed well 
with the GPS PW after elevation correction. 

Figure 7 shows the scatter plots between the monthly RMS difference of PW at each GPS station and 
the elevation of each GPS station. The left and right panels in Fig. 7 show the relationships between RMS 
difference and elevation at the GPS stations in January and August of 2014, respectively. The RMS 
difference at each GPS station showed no dependence on elevation; thus, we can conclude that elevation 
correction removed the elevation dependence of bias and RMS difference at almost all the GPS stations. 
However, the RMS difference increased after elevation correction at some GPS stations located in the 
lower-elevation region. As shown in Fig. 4, the bias at lower-elevation (less than approximately 200 m) GPS 
stations did not fit well to the regression line. Overcorrection may have occurred at these GPS stations. 

We also calculated the daily biases and RMS differences between MSM-refined PW and GPS PW at all 
GPS stations. Figure 8 shows the annual variation in daily bias and daily RMS difference in 2014. The blue 
line in Fig. 8 represents the annual variation in daily bias and RMS difference between elevation-corrected 
MSM-refined PW and GPS PW, and the red line represents the annual variation in daily bias and RMS 
difference without elevation correction. Without elevation correction, the RMS difference exceeded 4.0 mm 
on almost every day from June to September. This RMS difference was reduced to within 4.0 mm 
throughout the year by elevation correction. 

Figure 9 shows the MSM-refined PW maps at 0000 UTC on August 1, 2014 with and without elevation 
correction. These maps represent the PW distribution at 90-m resolution. After elevation correction, MSM-
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refined PW decreased in the higher-elevation region, and high-resolution distribution of atmospheric water 
vapor content could be estimated especially in that region. 

 

 
 
Fig. 5. Scatter plots between MSM-refined PW with (lower row) and without (upper row) elevation 
correction and GPS PW at validation sites at 0000 UTC in 2014. 
 

 
 
Fig. 6. Scatter plots between MSM-refined PW with (lower row) and without (upper row) elevation 
correction and GPS PW at validation sites at 1200 UTC in 2014. 
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Fig. 7. Relationship between RMS difference of PW and elevation of GPS stations in January (left) and 
August (right) of 2014. 
 

 
 
Fig. 8. Variations in daily bias (left) and daily RMS difference of PW (right) in 2014. 
 

 
 
Fig. 9. MSM-refined PW maps at 0000 UTC on August 1, 2014 with (right) and without (left) elevation 
correction. 
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5. Conclusion 
 
In this study, we estimated the PW distribution at high spatial resolution using NWP and DEM data from 
the Kanto region of Japan. The PW distribution at 90-m resolution was estimated by integrating the specific 
humidity between the layers bounded by each pressure level of MSM GPV data while accounting for the 
difference in surface elevation within pixels of MSM GPV data using 90-m-resolution ASTER GDEM 
data. The PW distribution was then corrected for elevation using the monthly slopes of linear regression 
lines between the biases and elevations of GPS stations. Elevation correction was necessary because the 
large elevation differences between MSM topography and GPS stations resulted in large biases between 
MSM-refined PW and GPS-derived PW. The results indicate that the proposed method can be used to 
estimate the PW distribution at a resolution of 90 m with an RMS difference of less than approximately 4.0 
mm throughout the year. The method can provide high-resolution information on atmospheric water vapor 
content and its variation at 3-h intervals. This information is expected to be useful in climate research and 
for the atmospheric correction of remote sensing data, which can improve the accuracy of remote sensing 
measurements. Elevation correction resulted in the overestimation of PW at some lower-elevation GPS 
stations, which was attributed to overcorrection. Future work will identify the elevations at which elevation 
correction should be applied. In addition, the proposed method requires the monthly estimation of PW to 
obtain the monthly slope for elevation correction. Thus, this method cannot estimate PW in near-real time 
after obtaining MSM GPV data. Future work will also examine whether the slope values given in Table 2 
vary by year. If the slope values vary little from year to year, they can be used in elevation correction to 
estimate the 90-m-resolution PW distribution in near-real time after obtaining MSM GPV data. 
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