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Abstract. This paper presents an efficient and accurate numerical technique, based on a scaled boundary 
finite element method (SBFEM) that is capable of solving two-dimensional, second-order, linear, multi-field 
boundary value problems. Basic governing equations are established in a general, unified context allowing 
the treatment of various classes of linear problems such as steady-state heat conduction problems, steady-
state flow in porous media, linear elasticity, linear piezoelectricity, and linear piezomagnetic and 
piezoelectromagnetic problems. A scaled boundary finite element approximation is also formulated within a 
general framework integrating the influence of the distributed body source, general boundary conditions, 
contributions of the general side-face data, and the flexibility of scaled boundary approximations. Standard 
procedures for numerical integration, search of eigenvalues and eigenvectors, determination of particular 
solutions, and solving a system of linear algebraic equations are adopted. After fully tested with available 
benchmark solutions, the proposed SBFEM is applied to solve various classes of linear problems under 
different scenarios to demonstrate its vast capability, computational efficiency and robustness. 
 
Keywords: Multi-field problems, SBFEM, surface flux, state variables, scaled boundary coordinates. 
 
 

ENGINEERING JOURNAL Volume 21 Issue 7 
Received 23 June 2017 
Accepted 27 August 2017 
Published 29 December 2017 
Online at http://www.engj.org/ 
DOI:10.4186/ej.2017.21.7.333 



DOI:10.4186/ej.2017.21.7.333 

334 ENGINEERING JOURNAL Volume 21 Issue 7, ISSN 0125-8281 (http://www.engj.org/) 

1. Introduction 
 
A scaled boundary finite element method (SBFEM) has been found an attractive alternative analysis tool in 
the modelling of various problems in applied mechanics for the past two decades [1-12]. The method is 
recognized as a semi-analytical technique combining features of both analytical schemes and the finite 
element approximation and, due to the reduction of a spatial dimension in the discretization, it can be also 
categorized as a particular type of boundary element methods (BEMs). However, the key difference 
between the SBFEM and conventional BEMs is that the former is generally free of fundamental solutions; 
as a direct consequence, the non-trivial numerical treatment of singular integrals is not required. The 
concept of the SBFEM was originally introduced by Wolf and Song [13-15] using the mechanical-based 
approach to properly and efficiently model linear elastic unbounded media in the dynamic analysis of soil-
structure interactions. To further reduce the complexity of the formulation presented in the original work, 
other techniques such as the standard weighted residual procedure and the principle of virtual work were 
also utilized to obtain the scaled boundary finite element equations [16-18]. As a result of the computational 
efficiency of the SBFEM in modelling unbounded media and the reduction of the discretization cost, 
various researches have been continuously and increasingly conducted, since its first emergence, to 
introduce other novel aspects and further enhance its capability.  

In recent years, the SBFEM has been also applied to solve various boundary value problems. One 
salient feature of the SBFEM is that the whole domain can be generated by scaling its boundary with 
respect to a single point termed the scaling center. The SBFEM only requires meshing on a representative 
boundary of the domain and does not involve fundamental solutions. For a domain with the complex 
geometries, its interior can be discretized into sub-domains to satisfy the scaling requirement. For fracture 
problems, the scaling center is commonly located at the crack tip and, as a result, the stress field can be 
expressed analytically along the direction radiating from the crack tip. As a result, the strength of singularity 
and associated information can be directly and accurately calculated from the obtained solution [19, 20]. 
Based on this positive feature, the method has been extensively utilized in the investigation and simulations 
of fracture problems under various scenarios such as crack formation, static and dynamic crack propagation, 
and transient responses of bodies containing interfacial cracks, stress singularities and bi-material interfaces 
[21, 22]. In the modelling of wave propagations, the SBFEM has been also widely employed to study elastic 
guided waves in an unbounded domain and the radiation and diffraction of linear water waves in shallow 
water with sidewalls [23-25]. Results from those investigations demonstrated that the SBFEM generally 
yields more accurate numerical solutions and is more computationally efficient, in terms of the number of 
degrees of freedom involved, than other existing approaches. Li et al. [26] applied the SBFEM to 
investigate the structural behavior of offshore monopoles with the influence of the ocean wave loads. The 
basic concept of the SBFEM was adopted to formulate the governing monopole’s equation and the 
analytical wave equation. Later, Li et al. [6, 7] extended the SBFEM to study three-dimensional wave-pile 
problems with the emphasis on the wave behavior and pile-group responses. In their formulation, the 
scaled boundary finite element approximation is applied to Helmholtz equation by separating the vertical 
component from the velocity potential. The two-dimensional SBFEM was adopted to examine the wave 
field near the free surface level. Results from these studies indicated that the SBFEM is an accurate and 
efficient computational tool for the analysis of wave problems and wave-structure interactions. However, 
their formulation and implementations were still limited to particular settings. 

To further enhance the capability of the technique, Deeks and Wolf [27] also integrated an h-
hierarchical adaptive procedure to the standard SBFEM. This technique exploited the ability of the SBFEM 
to model the stress singularities at the scaling center and to avoid the discretization of certain adjacent 
segments of the boundary. Later, Vu and Deeks [28] investigated the performance of high-order elements 
in the SBFEM. In their study, both the spectral element and hierarchical approaches were employed and 
they found that the spectral element approach was better than the hierarchical approach in terms of the 
computational efficiency. Deeks and Augarde [29] also incorporated the meshless scheme into the standard 
SBFEM to model the far-field problems. Although, the SBFEM has been successfully implemented in 
various applications, it also possesses certain drawbacks when the number of degrees of freedom resulting 
from the discretization becomes large, rendering the computational expenses substantial. To overcome 
such disadvantage, Vu and Deeks [30] integrated a p-adaptive scheme in the SBFEM for solving two 
dimensional boundary value problems. In this study, an alternative set of refinement criteria was considered 
to maximize the solution accuracy while minimizing the computational cost. Furthermore, He et al. [31] 
presented a new element-free Galerkin scaled boundary finite element method for the approximation in the 
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circumferential direction. This particular technique was then applied to solve a number of standard linear 
elasticity problems and the technique was found to offer higher and better rate of convergence than the 
original SBFEM. Additionally, He et al. [32] investigated the possibility of using the Fourier shape functions 
in the SBFEM. The developed technique was then used to solve elastostatics and steady-state heat transfer 
problems. It was found that the accuracy and convergence of numerical solutions were better than those of 
results obtained from using the polynomial shape functions and an element-free Galerkin scheme. 

Applications of the SBFEM to the analysis of linear problems involving piezoelectric materials have 
also been recognized in the literature. Liu and Lin [4] used the SBFEM to investigate two-dimensional 
electrostatic problems. Li et al. [5] developed the SBFEM to solve two-dimensional, linear piezoelectric 
fracture problems. The stress and electric displacement intensity factors for both static and dynamic cases 
were calculated directly from results of the SBFEM. It was indicated that the technique requires no 
asymptotic solution, no local mesh refinement, and no special treatment around the crack tip. Recently, 
Dieringer and Becker [33] employed the SBFEM to investigate linear problems within the framework of a 
classical laminated plate theory. In their study, the scaled boundary finite element equations for composites 
were formulated in terms of the displacement, and the stress singularity at a notch was fully examined. They 
also demonstrated that the enhanced SBFEM can evaluate the singular stress field as an explicit function of 
the notch opening displacement. Li et al. [34] and Li et al. [11] also employed the SBFEM to perform two-
dimensional simulations of dynamic cracks and interfacial cracks in piezoelectric composites and also study 
the influence of thermal loads on the fracture response. While the SBFEM has been applied successfully to 
solve linear piezoelectric problems, the underlying formulation and existing implemented procedures are 
still limited to certain scenarios and, in particular, the extension of the technique to treat other general 
coupled-field media has not been found in the literature.  

Other recent applications of the SBFEM have been also recognized. For instance, Ooi et al. [9,10] 
developed an efficient procedure based on the SBFEM together with polygon elements for simulating 
dynamic crack propagation in elastic media; He et al. [35] presented the SBFEM for the numerical analysis 
of two-dimensional elastic bodies with the rotationally periodic symmetry and subjected to arbitrary loading 
conditions; and, most recently, Vu and Deeks [8] integrated the information of the fundamental solutions 
into the scaled boundary finite element method and then used the technique to investigate problems in 
linear elasticity with concentrated loads. As become evident from the vast amount of related publications, 
researches on both the novel development and the enhancement of existing SBFEM have continuously and 
increasingly grown. However, most of existing SBFEMs were developed specifically for problems 
considered and this, as a consequence, limits its generality and flexibility to treat general field problems 
under various scenarios when compared with standard finite element methods. A systematic generalization 
of the SBFEMs to treat a broader class of boundary value problems obviously requires further rigorous 
investigations. 

The present study aims to offer the SBFEM capable of solving two-dimensional, linear, second-order, 
multi-field boundary value problems. The key and novel feature is that all basic field equations governing 
responses of interest are formulated in a general framework allowing various types of linear problems such 
as steady-state heat conduction and flow in porous media, Laplace’s equation, linear elasticity, linear 
piezoelectricity and other coupled-field problems to be treated in a unified manner. In addition, the 
treatment of distributed body source, general boundary conditions, prescribed conditions on the side faces, 
and the scaled boundary approximations are integrated in the implementation. 
 

2. Problem Formulation 
 

Consider a two-dimensional body occupying a region   in 2
 as shown schematically in Fig. 1. The 

region is assumed smooth in the sense that all involved mathematical operators (e.g., integrations and 
differentiations) can be performed on this region. In addition, the boundary of the body  , denoted by 

 , is assumed piecewise smooth and an outward unit normal vector at any smooth point on   is 

denoted by 1 2{   }Tn nn . More restrictions about the geometry of the body   pertained in the present 

study will be posed later as is appropriate. A two-dimensional Cartesian coordinate system 1 2{ ; , }x x0  with 

the origin located at point 0  is introduced and a symbol ,f   is used throughout to denote a partial 

derivative of a function f  with respect to the coordinate , {1,2}x   (i.e., , /f f x    ). Here and in 

what follows, standard indicial notations apply for subscripts with lower-case Greek and upper-case indices. 
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In particular, lower-case Greek subscripts range from 1 to 2 whereas upper-case subscripts range from 1 to 

{1,2,3,...}  and repeated subscripts imply the summation over their range unless stated otherwise. 

 

 
 

Fig. 1. Schematic of two-dimensional, multi-field body subjected to external excitations. 
 

The body is made of a homogeneous material with its behavior completely characterized by 24  constants 

denoted by a set { }IJE   and subjected to a prescribed distributed body-source field, denoted by a  -

component vector field 1 2( ) { ( )  ( ) ... ( )}Tb b bb x x x x . In the present study, the constants 
 IJE  are 

assumed to satisfy the symmetry IJ JIE E    . Responses of the body due to the distributed body-source 

( )b x  are assumed to be completely described by following three fields: the state variable ( )u x , the state-

variable gradient ( )x , and the body flux ( )x . The state variable ( )u x  contains   components 

denoted by ( )Ju x  and is represented, in a vector form, by 

 

 1 2( ) { ( )  ( ) ... ( )}Tu u uu x x x x  (1) 

 

The state-variable gradient ( )x  and the body flux ( )x  contain 2  components denoted by 
J  and 

J , respectively, and they can be also represented in a vector form by 

 

 11 12 1 21 22 2( ) { ( )  ( ) ... ( )  ( )  ( ) ... ( )}T      x x x x x x x  (2) 

 11 12 1 21 22 2      ( ) { ( )  ( ) ... ( )  ( )  ( ) ... ( )}Tx x x x x x x  (3) 

 

In addition, the surface flux at any smooth point x  on the boundary is denoted by a  -component vector 

1 2( ) { ( )  ( ) ... ( )}Tt t tt x x x x . The boundary of the given body   can be decomposed into two 

disjoint portions; one is denoted by u where the state variable u  is fully prescribed (
0( )u u x

u x  where 
0( )u x  is a prescribed vector) and the other is denoted by t  where the surface flux t   

is fully prescribed (i.e., 
0( )t t x t x  where 

0( )t x  is a prescribed vector). In the present study, the 

prescribed vector-value functions ( )b x , 
0( )u x  and 

0( )t x  are assumed sufficiently smooth to ensure the 

existence of the responses ( )u u x ,  ( ) x   and ( ) x  . 

A set of field equations governing all field quantities described above is formulated within a general 
framework to allow various classes of linear, second-order, boundary value problems encountered in 
various areas (e.g., steady-state heat condition problems, steady-state flow in porous media, membrane 
problems, linear elasticity, problems associated with multi-field materials such as piezoelectric, 
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piezomagnetic and piezoelectromagnetic solids, etc.) to be treated in a unified manner. The integer   is 

used as a key parameter to indicate the type of problems. For instance, 1   corresponds to steady-state 
heat condition problems, problems of Darcy’s flow in porous media, and membrane problems, and 

;{ ( ); ( ); ( ); ( ) ; }IJE u x x x b x t   represents {temperature; temperature gradient; heat flux; heat source; 

thermal conductivity; surface heat flux}, {fluid pressure; pressure gradient; fluid flux; source and sink; 
permeability; surface flux}, and {deflection; slopes; resultant shear force; distributed transverse load; 

membrane stiffness; end shear force}, respectively; 2   corresponds to linear elasticity problems and 

;{ ( ); ( ); ( ); ( ) ; }IJE u x x x b x t   represents {displacement; displacement gradient; stress; body force; 

elastic constants; traction}; 3   corresponds to linear piezoelectric and piezomagnetic problems and 

;{ ( ); ( ); ( ); ( ) ; }IJE u x x x b x t   represents {displacement and electric potential; gradients of 

displacement and electric potential; stress and electric induction; body force and body charge; elastic 
constants, piezoelectric constants, dielectric permittivities; traction and surface charge} and {displacement 
and magnetic potential; gradients of displacement and magnetic potential; stress and magnetic induction; 
body force and magnetic body source; elastic constants, piezomagnetic constants, magnetic permeabilities; 

traction and surface magnetic induction}, respectively; and 4  corresponds to linear 

piezoelectromagnetic problems and ;{ ( ); ( ); ( ); ( ) ; }IJE u x x x b x t   represents {displacement, electric 

and magnetic potentials; gradients of displacement, electric and magnetic potentials; stress, electric and 
magnetic inductions; body force, body charge, magnetic body source; elastic, piezoelectric, piezomagnetic 
and electromagnetic constants, dielectric permittivities, magnetic permeabilities; traction, surface charge, 
surface magnetic induction}. 

The fundamental laws of conservation (e.g., conservation of linear and angular momentum, 
conservation of mass, conservation of heat flow, etc.), the linear constitutive laws (e.g., Darcy’s law, 
Fourier’s law, Hookes’ law, generalized Hookes’ law, etc), and the laws of kinematics (e.g., strain-
displacement relations, electric-potential-field relations, etc.) are employed to form the basic governing field 
equations and they are expressed in a concise and unified form as follows:  
 

 
T  L b 0  (4) 

 D   (5) 

 Lu  (6) 
 

where a superscript “T” indicates a matrix transpose operator, D  is a 2 2  -matrix termed the modulus 

matrix, and L  represents the linear differential operator defined, in terms of a 2 -matrix, by 
 

 1 2 1 2

1 2 1 2

;  ,
x x x x

   

   

          
            

          

I 0 I 0
L L L L L

0 I 0 I
 (7) 

 

with 
I  and 

0  denoting a  -identity matrix and a  -zero matrix, respectively. It should be 

remarked that entries of the modulus matrix D  can be simply obtained from the set  { }IJE   by properly 

considering the definition of the vectors   and    (i.e., 1 1JK JKE D , 1 2 ,JK J KE D  , 2 1 ,JK J KE D   

and  2 2 ,JK J KE D ) and, due to the symmetry of IJE  , the modulus matrix D  is obviously symmetric. 

By applying the law of conservation at any smooth point x  on the boundary  , the surface flux  ( )t x  

can be related to the body flux ( )x  and the outward unit normal vector 1 2( ) { ( )  ( )}Tn nx x xn  by 

 

  1 2n n t I I   (8) 

 
Other useful relations such as that directly relating the body flux and the state variable and one connecting 
the surface flux and the state variable on the boundary can be readily obtained as 
 

 ( )D Lu  (9) 
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  1 2 ( )n n t I I D Lu  (10) 

 

2.1. Weak Formulation 
 
A standard weighted residual technique is adopted along with the integration by parts via divergence 
theorem to obtain a weak-form statement of the above problem. By first taking the inner product of (4) 

and any sufficiently smooth weight function 
1 2( ) { ( )  ( ) ... ( )}Tw w ww x x x x , integrating the result over the 

body  , and then applying an identity   ,( ) ( )T T T

J Jw w L Lw   , it leads to 

 

  
  

   ,( ) ( )T T

J JdA w dA dALw w b  (11) 

 
By applying divergence theorem to the first integral on the right hand side (11) and then enforcing the 
boundary term (8), it gives rise to 
 

 ( )T T TdA dl dA
  

   Lw w t w b  (12) 

 
By further replacing the body flux σ  appearing in (12) by that associated with the state variable via the 
relation (9), it finally yields 
 

 ( ) ( )T T TdA dl dA
  

   Lw D Lu w t w b  (13) 

 
It should be apparent from the above formulation that the weak-form Eq. (13) is valid for an arbitrary 
choice of the weight function w. Only restriction placed on the weight function is the smoothness 
requirement to ensure the integrability of all integrals appearing in (13). This can be achieved by requiring 
the weight function and their first partial derivatives square integrable, i.e., 
 

 ( ) ( )T T dA


     Lw Lw w w  (14) 

 

2.2. Scaled Boundary Coordinate Transformation 
 

Let 
0 10 20( , )x xx  be a point in 2  and C  be a simple, piecewise smooth curve in 2  parameterized by 

a function      2

10 1 20 2
ˆ ˆ: [ , ] ( ( ), ( ))s a b x x s x x sr  as shown in Fig. 2. Let ( )s  be the 

circumferential angle of a point ( )sr  on the curve C  measured from a straight line connecting 
0x and 

( )ar  to a straight line connecting 
0x  and ( )sr  (see Figure 2). The simple curve C  considered here can be 

either closed (i.e., ( ) ( )a br r ) or opened (i.e., ( ) ( )a br r ) and, in addition, it must not contain the point 

0x  and satisfies the conditions [0,2 ]   and / 0  ( , )d ds s a b    . Now, let us introduce the following 

coordinate transformation 
 

 0
ˆ( )s x x x  (15) 

 

where 0  . It is evident from the coordinate transformation (15) that (i) any straight line 0 ,a s b     

in the s   plane is mapped to a curve S in the 1 2x x plane which is simply a scaled version of the curve 

C about 0x and (ii) any straight line 00, [ , ]s s a b     in the s   plane is mapped to a semi-infinite 

straight line L  in the 1 2x x  plane starting from 
0x  and passing through the point 

0( )sr  on the curve C

(also see Figure 2). In addition, a straight line 0,a s b     in the s   plane is mapped to a single point 

0x  which is termed the scaling center and a straight line 1,a s b     in the s   plane is mapped to the 
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curve C  which is termed the defining curve. The coordinates   and s  are termed the scale boundary coordinates. 

Clearly, the transformation (15) maps the region 0,a s b     in the s   plane into a region in the 

1 2x x  plane bounded by the two straight lines 
aL  and 

bL  (i.e., a shaded region shown in Figure 2). From 

the coordinate transformation (15), a differential line {  }Td d dsζ  at any point ( , )s  in the s   plane is 

related to a differential line 
1 2{  }Td dx dxx  at any point 

1 2( , )x x   in the 
1 2x x  plane by 

 

 
 

Fig. 2. Schematic of a scaling centre 0x  and a defining curve C .  

 

 



  


   

         

1 1 2 11

2 2 2 1

ˆ ˆ ˆ ˆ/ / /1
 ;    

ˆ ˆ ˆ ˆ/ / /

x dx ds dx ds dx ds
d d d d d d

x dx ds x xJ
x T ζ ζ T x x  (16) 

 

where 
1 2 2 1

ˆ ˆ ˆ ˆ/ /J x dx ds x dx ds  . By setting  ( )d dζ m  where m  is a unit vector and d  is the length of 

dζ , it can be readily verified that the length of dx , denoted by dl , is given by 

 

 dl dx dx T T m m d         (17) 

 

For following two special cases: (i) {1 0}Tm ,  d d  and (ii) {0 1}Tm , d ds  , the relation (17) 

reduces, respectively, to 
 

 
2 2

1 2
ˆ ˆ( ) ,   ( )dl J s d J s x x     (18) 

    
2 2

1 2
ˆ ˆ( ) ,   ( ) / /s sdl J s ds J s dx ds dx ds    (19) 

 

Similarly, the differential area d ds  at any point ( , )s  in the s   plane can be related to the differential 

area dA  at any point 1 2( , )x x  in the 1 2x x  plane by 

 

 dA J d ds   (20) 

 
From the chain rule for differentiations, the partial derivative of any function with respect to the coordinate  

x  can be further related to those with respect to the coordinates   and s  via the following relation 
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2
2

1

1
1

2

ˆ
ˆ

1

ˆ 1
ˆ

dx
x

x ds

dxJ
x

x sds





     
        

     
     

         

 (21) 

 

The linear differential operator L  given by (7) can be now expressed in terms of partial derivatives with 

respect to the coordinates   and s  by 

 

 1 2

1

s 

 
 

 
L b b  (22) 

 

where 1b  and 2b  are 2 -matrices defined by 

 

 







 
   

    
  

  

2

2

1 2

1 1

ˆ

ˆ1 1
,     

ˆ ˆ

dx

xds

dx xJ J

ds

I
I

b b
I

I

   (23) 

 

In the present study, we focus only on a body   whose geometry can be completely described by a single 

scaling center. In particular, there must exist the scaling center 0x  and defining curve C  such that there 

exists a region 1 2 1 2[ , ] [ , ]s s    in the s   plane that is mapped into the region   in the 1 2x x  plane 

via the transformation (15). If the defining curve C is opened, the body is said to be opened and portions of 

the boundary   associated with 1s s and 2s s  are termed the side faces (see Figure 3(a), (b), (c) and (d)). 

If the defining curve is closed, the body is said to be closed and the boundary   contains no side face 

(see Figure 3(e), (f), (g) and (h)). If 2  is finite, the body   is said to be bounded (see Figures 3(a), (c), (e) 

and (g)); otherwise (i.e., 2  ), it is said to be unbounded (see Figures 3(b), (d), (f) and (h)). If 1 0  , the 

body   contains the scaling center 0x (see Figures 3(c), (d), (g) and (h)); otherwise (i.e., 1 0  ), the body 

  does not contain the scaling center 0x  (see Figures 3(a), (b), (e) and (f)). Portions of the boundary   

associated with 1 0    and 2    are termed the inner and outer boundaries, respectively. 

 
2.3. Scaled Boundary Finite Element Approximation 

 
The defining curve C  is discretized into a mesh containing n  elements and m  nodes. The coordinates of 

any point on C , denoted by 0
ˆ( )s x x x , is then approximated by 

 

 0 ( ) ( ) 0

1

ˆ( ) ( )
m

h G

i i

i

x s x s x x    


    N X  (24) 

 

where the superscript “ h ” is used, here and in what follows, to designate approximate quantities, 

(1) ( 2) ( ){ }G

m  N  stands for a row-matrix containing all nodal basis functions, and 

(1) ( 2) ( )
ˆ ˆ ˆ{ }T

mx x x   X  denotes a vector containing all nodal relative coordinates in which 

( ) ( ) 0
ˆ

i ix x x     represents the coordinate of the ith node relative to the scaling center 0x . The resulting 

discretized defining curve is denoted by 
hC  and the region in the 1 2x x  plane described by the 

discretized defining curve 
hC  is then used as the approximation for the geometry of the body   and 

denoted by 
h . With the relation (24), the derivative ˆ /dx ds  is then approximated by 
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Fig. 3. Schematics of opened bodies: (a) bounded body containing no scaling center, (b) unbounded body 
containing no scaling center, (c) bounded body containing scaling center, and (d) unbounded body 
containing scaling center, and schematics of closed bodies: (e) bounded body containing a hole, (f) 
unbounded body containing a hole, (g) bounded body containing no hole, and (h) unbounded body 
containing no hole. 
 

 
ˆ h

Gdx

ds


B X  (25) 

 

where /G Gd dsB N . Approximations of J , J  , 
sJ , 1b , 2b  and the linear operator L are given by 

 

 1 2 2 1( ) ( )h T G T G T G T GJ  X N B X X N B X  (26) 

 1 1 2 2( ) ( )h T G T G T G T GJ  X N N X X N N X , 1 1 2 2( ) ( )sh T G T G T G T GJ  X B B X X B B X  (27) 

 2

1

1

1
G

h

h GJ





 
  

 

B X I
b

B X I
,  2

2

1

1
G

h

h GJ





 
  

 

N X I
b

N X I
 (28) 

 1 2

1h h h

s 

 
 

 
L b b  (29) 

 
From the coordinate transformation (15) along with the approximation (24), the state variable u and the 

weight function w are now approximated, respectively, by 
hu and 

hw in a form 
 

 ( ) ( )

1

( , ) ( ) ( )
m

h h h S h

i i

i

s s  


  u u u N U  (30) 

 ( ) ( )

1

( , ) ( ) ( )
m

h h h S h

i i

i

s s  


  w w w N W  (31) 

 

where ( )( )h

iu  and ( )( )h

i w  denote values of the state variable and arbitrary function along the line ( )is s , 

respectively; (1) ( 2) ( ){ }S

m    N I I I  is a m  -matrix containing all nodal basis 

functions; and (1) ( 2) ( ){ ( ) ( ) ( )}h h h h T

m  U u u u  and (1) ( 2) ( ){ ( ) ( ) ( )}h h h h T

m  W w w w  

denote vectors containing all functions ( )( )h

i u  and ( )( )h

i w , respectively. It should be remarked that the 

nodal basis functions ( )( )i s  and ( )( )i s  are constructed using a finite element technique by simply 
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patching the local element shape functions associated with the ith node and, as a result, it satisfies the 

Kronecker-delta property, i.e., ( ) ( ) ( ) ( )( ) ( )i j i j ijs s     where ( )js  is the value of the boundary coordinate 

s  of the jth node and ij  denotes the Kronecker-delta symbol. The approximation of the body flux   and 

Lw  at any point 
hx  in the 1 2x x  plane can also be obtained by  

 

 1 2 1 , 2

1 1
( , ) ( ) ( )h h h h h h S h h hs

s


  

    
        

    
D L u D b b N U D B U B U   (32) 

 1 2 1 , 2

1 1
( , ) ( )h h h h h h S h h hs

s


  

    
       

    
L w L w b b N W BW B W  (33) 

 

where 1B  and 2B  are defined by 

 

 1 1

h SB b N ,   2 2 2 /h S h Sd ds B b B b N  (34) 

 

It is worth noting that both the matrices 1B  and 2B  are independent of the scaling coordinate  . 

 
2.4. Scaled Boundary Finite Element Equations 
 
A set of scaled boundary finite element equations is established, here, for a generic, two-dimensional body 

  as shown in Figure 4 to ensure that the resulting formulation is applicable to various cases. The 

boundary of the domain   is assumed consisting of four parts resulting from the scale boundary 

coordinate transformation with the scaling center 0x  and defining curve C : the inner boundary 1 , the 

outer boundary 2 , the side-face-1 1

s , and the side-face-2 2

s . For certain special cases such as 

closed bodies without the side face, bodies containing the scaling center, and unbounded bodies, it simply 

takes 1 2

s s    ,  1 , and  2  in the following formulation, respectively. The 

approximation of the given body   is achieved via the discretization of the defining curve 
hC  along with 

the mapping region 1 2 1 2[ , ] [ , ]s s    in the s   plane, and the approximate body is denoted by 
h . In 

particular, the approximate inner and outer boundaries 1

h  and 2

h , the side-face-1 1

s , and the side-

face-2 2

s  are fully described by a curve 1 1 2, s s s    , a curve 2 1 2, s s s    , a straight line 

1 1 2,s s      , and a straight line 2 1 2,s s      , respectively. 

 

 
Fig. 4. Schematic of a generic body   and its approximation 

h . The dashed lines are used to represent 
the approximation of the defining curve, the inner boundary and the outer boundary. 
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From the boundary partition 1 2 1 1

s s      and the coordinate transformation (15), the 

weak-form equation (13) can be rewritten for this generic body   as 
 

 

2 2 2 2 2 2

1 1 1 1 1 1

2 2

1 1

1 1 1 2 2 2

1 1 1 2 2 2

( ) ( ) ( ) ( ) ( ) ( )

                                       ( ) ( ) ( ) ( )

s s s s

T T T s T s

s s s s

s T s s T s

J d ds J d ds s J s ds s J s ds

J d J d

 

 

 

 

 

     

   

  

 

     

 

Lw D Lu w b w t w t

w t w t

 (35) 

 

where 1w , 2w , 1

sw , 2

sw  are restrictions of the weight function w  on the boundaries 1 , 2 , 1

s , 

2

s , respectively; 1t , 2t , 1

st , 2

st  are surface flux on the boundaries 1 , 2 , 1

s , 2

s , respectively; 

and 1 1( )J J s  , 2 2( )J J s  . Next, by introducing the approximations of the body flux (32) and the 

derivatives of the weight function (33) along with the domain approximation, the integral on the left-hand 

side of (35), denoted for convenience by 1I , becomes 

 

 

2 2 2 2

1 1 1 1

2 2 2 2

1 1 1 1

1 , 1 1 , , 1 2

2 1 , 2 2

( ) ( )

   ( ) ( )

s s

h T T h h h T T h h

s s

s s h
h T T h h h T T h

s s

J d ds J d ds

J
J d ds d ds

 

  

 

 



 

  

 


 

 

   

   

W B DB U W B DB U

W B DB U W B DB U

I

 (36) 

 

Further integrating the first two integrals by parts with respect to the coordinate   and recalling that the 

matrices 1B  and 2B  are independent of the coordinate  , 
hW  and 

hU  are independent of the coordinate 

s , and the matrix D  is independent of both   and s , the integral 1I  is simplified to  
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2

1

2 1

1 0 , 1 1 0 , 2

2 0 , 1 1 0 , 1

1
( ) ( )

   ( ) ( )

h T h T h h

h T h T h h T h T h

d



 



    

 


 
 

 
      

 
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 W E U E E E U E U

W E U E U W E U E U

I
 (37) 

 

where 1 1( )h h   W W , 2 2( )h h   W W , and 0E , 1E , and 2E are defined by 

 

 
2

1

0 1 1

s

T h

s

J ds E B DB ,   
2

1

1 2 1

s

T h

s

J ds E B DB ,   
2

1

2 2 2

s

T h

s

J ds E B DB  (38) 

 

It is evident that both matrices 0E  and 2E  are symmetric. By following a similar procedure, the boundary 

integrals appearing on the right-hand side of (35), denoted by 2I , can be approximated by 

 

 

 

 

     
2 2

1 1

2 1 1 2 2 1 2( ) ( ) ( ) ( )h T h T h T t h T td dW P W P W F W FI  (39) 

 

where 1 1( )S S s s N N , 2 2( )S S s s N N , and 

 

 
2

1

1 1 1( ) ( ) ( )

s

S T sh

s

s J s ds P N t ,   
2

1

2 2 2( ) ( ) ( )

s

S T sh

s

s J s ds P N t   (40) 

 1 1 1 1( ) ( )t S T s hJF N t ,  2 2 2 2( ) ( )t S T s hJF N t  (41) 
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in which 
 1 1( )h hJ J s  and 2 2( )h hJ J s  . Without loss of generality, the first and last nodes resulting from 

the discretization of opened bodies are taken as a node on the side-face-1 and a node on the side-face-2, 
respectively, and this applies in what follows. It should be remarked from the Kronecker property of the 

nodal basis functions that (1) 1( ) 1s  , ( ) 1( ) 0 2j s j     and ( ) 2( ) 1m s  , ( ) 2( ) 0 1j s j m     . Now, 

both the matrices 1

SN  and 2

SN  clearly contain many zero entries and simply take the form 

 

 1 { }S

  N I 0 0 ,   2 { }S

  N 0 0 I   (42) 

 
Substituting (42) into (41) leads to 
 

 1 1 1{ ( ) }t h s TJ   F t 0 0 ,  2 2 2{ ( )}t h s TJ  F 0 0 t    (43) 

 

where 0  is a zero  -component vector. Finally, the domain integral associated with the distributed body 

source on the right-hand side of (35), denoted by 3I , can be approximated by 

 

 
2

1

3 ( )h T bd





   W FI     (44) 

 

where the matrix 
bF is defined by 

 

 
2 2 2 2

1 1 1 1

(1) ( 2 ) ( )( )

T
s s s s

b S T h h h h

m

s s s s

J ds J ds J ds J ds  
  

   
  

   F N b b b b  (45) 

 
By combing the results (37), (39) and (44), the approximation of the weak-form (35) becomes 
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
2

1

2 1

0 , 1 1 0 , 2

2 0 , 1 2 1 0 , 1 1

1
( ) ( )

( ) ( ) 0

h T h T h h t b

h T h T h h T h T h

dW E U E E E U E U F F

W E U E U P W E U E U P

 (46) 

 

where 1 2

t t t F F F . From the arbitrariness of the weight function hW , it can be deduced that 

 

 2 2

0 , 0 1 1 , 2 1 2( )    ( , )h T h h t b

               E U E E E U E U F F 0     (47) 

 1 1( )h   Q P     (48) 

 2 2( )h  Q P     (49) 

 

where the vector ( )h h Q Q  known as the nodal internal flux is defined by 

 

 0 , 1( )h h T h

  Q E U E U     (50) 

 
A set of Eqs. (47)-(49) is known as the scaled boundary finite element equations governing the unknown 

function ( )h h U U . It can be remarked that (47) forms a system of linear, second-order, 

nonhomogeneous, ordinary differential equations with respect to the coordinate   whereas (48) and (49) 

pose the boundary conditions on both inner and outer boundaries of the body. As previously pointed out, 
the governing equations and boundary conditions (47)-(49) are formulated in a general context; as a result, 
for certain special cases, some terms or equations must be eliminated properly. For instances, the boundary 
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condition (49) is ignored for unbounded bodies; the boundary condition (48) is ignored for bounded bodies 

containing the scaling center; the term 
tF  vanishes for closed bodies; and the term 

bF  vanishes for bodies 
free of the distributed body source. 
 

2.5. Treatment of Prescribed Conditions on Side Faces 
 
It should be evident from (47)-(49) that the information associated with the prescribed distributed body 
source and the prescribed boundary conditions on both inner and outer boundaries can be integrated into 

the formulation via the term bF  and the boundary conditions (48)-(49), respectively. However, the 
consideration of the prescribed surface flux and state variable on the side face is still not apparent from the 
above formulation. The system of linear differential equations (47) can be further re-expressed in a form 
well-suited for the treatment of those prescribed side-face conditions. 

First, bodies considered in the present study are divided into five groups, Group-1, Group-2, Group-3, 
Group-4, and Group-5, associated with closed bodies without the side-face, opened bodies with prescribed 
surface flux on both side faces, opened bodies with prescribed surface flux on the side-face-1 and 
prescribed state variable on the side-face-2, opened bodies with prescribed surface flux on the side-face-2 
and prescribed state variable on the side-face-1, and opened bodies with prescribed state variable on both 

side faces, respectively. For bodies in Group-1, 
hU  contains only unknown functions and 1

st , 2

st  disappear; 

for bodies in Group-2,  
hU  contains only unknown functions whereas 1

st , 2

st  are fully prescribed; for bodies 

in Group-3, 1

st , and ( )( )h

m u  are fully prescribed and 2

st  and the remaining functions ( )( ) 1h

i i m   u  in 

hU  are unknown; for bodies in Group-4, 2

st  and (1)( )h u  are fully prescribed and 1

st  and the remaining 

functions ( )( ) 2h

i i  u  in 
hU  are unknown; and for bodies in Group-5, both (1)( )h u  and ( )( )h

m u  are fully 

prescribed whereas 1

st , 2

st , and the remaining functions ( )( ) 2 1h

i i m    u  in 
hU  are unknown. To 

treat the prescribed conditions on the side-face for bodies in all groups, the vector 
hU  is partitioned and 

rearranged into known and unknown parts as { }h hu hc TU U U  where ( )hu hu U U  contains only 

unknown functions from a collection ( )( ), 1,2,...,h

i i m u  and ( )hc hc U U  contains the remaining known 

functions associated with the prescribed state variable on the side face. By defining  as the number of 

known functions ( )( )h

i u  contained in 
hcU , the number of remaining unknown functions ( )( )h

i u  contained 

in 
huU  is therefore equal to m p . Clearly, the value of p  associated with bodies in Group-1, Group-2, 

Group-3, Group-4, and Group-5 are 0, 0, 1, 1, and 2 respectively. Consistent with the partition of the vector 
hU , the vector 

tF  can be also partitioned into { }t tu tc TF F F  where ( )tu tu F F  contains many 

zero functions and known functions corresponding to the prescribed surface flux on the side face and 

( )tc tc F F  contains unknown functions associated with the unknown surface flux on the side face. 

According to this partition, the system of differential equations (47) can be separated into 
 

 2 2

0 , 0 1 1 , 2( )uu hu uu uu T uu hu uu hu tu bu suu

             E U E E E U E U F F F     (51) 

 2tc bc suc scc    F F F F     (52) 

 

where buF  and bcF results directly from the partition of the known vector { }b bu bc TF F F and the 

vectors suuF , sccF  and sucF are defined by 
 

 2

0 , 0 1 1 , 2( ( ) )suu uc hc uc cu T uc hc uc hc

      F E U E E E U E U     (53) 

 2

0 , 0 1 1 , 2( )scc cc hc cc cc T cc hc cc hc

         F E U E E E U E U     (54) 

 2

0 , 0 1 1 , 2( ) ( ) ( ) ( )suc uc T hu uc T uc T cu hu uc T hu

         F E U E E E U E U     (55) 

 

p
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in which , , ,uu uc cu cc

i i i iE E E E  for 0,1,2i  are sub-matrices resulting from the partition of the matrix iE . 

Note that both suuF  and sccF  are known vectors obtained from the prescribed state variable on the side 

face whereas sucF  is given in terms of the unknown vector huU . By following the same procedure, the 
relation (50) can be also partitioned into 
 

 0 , 1( ) ( ) ( )hu uu hu uu T hu huc

    Q E U E U Q     (56) 

 0 , 1( ) ( ) ( ) ( )hc uc T hu uc T hu hcc

    Q E U E U Q     (57) 

 

where  ( )huc Q  and ( )hcc Q  are known vectors defined by 

 

 0 , 1( ) ( )huc uc hc cu T hc

  Q E U E U ,      0 , 1( ) ( )hcc cc hc cc T hc

  Q E U E U   (58) 

 
Now, a system of differential equations (51) together with the following two boundary conditions on the 

inner and outer boundaries (i.e., 1 1( )hu u  Q P and 2 2( )hu u Q P ) is sufficient for determining the general 

solution huU  of the given boundary value problem. Note that 1

uP  and 2

uP  are vectors resulting from the 

partition of the vectors 1P  and 2P , respectively (i.e., 1 1 1{ }u c TP P P  and 2 2 2{ }u c TP P P ). Once 
huU  is 

determined, the vectors tcF , 1

cP , and 2

cP  can be readily obtained. 

 

3. Solution Procedure 
 
This section presents the procedure for obtaining the analytical solution of a system of linear, second-order, 
nonhomogeneous, ordinary differential equations (51) along with the prescribed conditions on both inner 
and outer boundaries. A corresponding eigenvalue problem is solved first to determine the homogeneous 
solution and the method of undetermined coefficients is then utilized to construct the particular solution 
associated with the distributed body source and the prescribed conditions on the side faces. Once the 
general solution is obtained, the boundary conditions on both inner and outer boundaries are enforced to 
determine all involved constants. Finally, the post-process for field quantities of interest such as the state 
variable and body flux is briefly described. 
 
3.1. Determination of Homogeneous Solution 
 
Following the standard procedure in the theory of differential equations, a homogeneous solution of a 

system of linear, second-order, Euler-Cauchy differential equations (51), denoted by 0

huU , takes the 

following form 
 

 
2( )

0

1

( ) i

m p
hu u

i i

i

c  
 



 U      (59) 

 

where i  is termed the modal scaling factor, i  is the ( )m p  -component vector  representing the ith 

mode of the state variable, and ic are arbitrary constants denoting the contribution of the ith mode. The 

nodal internal flux 0 ( )hu Q  associated with 0

huU  can be obtained as 

 

 
2( ) 2( )

0 0 1

1 1

( ) ( )i i

m p m p
hu uu uu T u u

i i i i i

i i

c c    
   

 

     Q E E q     (60) 

 

where u

iq  is termed the ith modal internal flux defined in terms of u

i  by 

 

 0 1( )u uu uu T u

i i i   q E E      (61) 
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By substituting (59) into (51) and then employing arbitrariness of ic , it results in 

 

  2

0 1 1 2( )    {1,2,..., 2( ) }uu uu T uu uu u

i i i i m p           E E E E 0   (62) 

 
By further rearranging terms in (61) such that 
 

 1 1

0 1 0( ) ( ) ( )u uu uu T u uu u

i i i i    E E E q      (63) 

 

where 1

0( )uu E  denotes the inverse of 0

uuE , and then substituting this result into (62), it finally yields 

 

 1 1

2 1 0 1 1 0( ) ( ) ( )u uu uu uu uu T u uu uu u

i i i i      q E E E E E E q   (64) 

 

Now, by introducing a 2( )m p  -component vector iX  such that { }u u T

i i iX q , equations (63) and 

(64) can be combined into a system of linear algebraic equations 
 

 i i iAX X   (65) 

 

where a coefficient matrix A  is given by 
 

 

1 1

0 1 0

1 1

2 1 0 1 1 0

( ) ( ) ( )

( ) ( ) ( )

uu uu T uu

uu uu uu uu T uu uu

 

 

 
  

 

E E E
A

E E E E E E
  (66) 

 

Determination of 2( )m p   pairs of { , }i i X  can be achieved by solving the eigenvalue problem (65) 

where i  denotes the eigenvalue and iX  are the associated eigenvector. It should be remarked that since 

A  is, in general, not symmetric, { , }i i X  involves complex numbers. In fact, only a half of the eigenvalues 

has the positive real part whereas the other half has the negative real part. Let   and  be 

( ) ( )m p m p     diagonal matrices containing eigenvalues with the positive and negative real parts, 

respectively,   and q be matrices whose columns are u

i  and u

iq  of the eigenvector  { }u u T

i i iX q  

associated with i  in  , and   and q be matrices whose columns are u

i  and u

iq of the eigenvector

{ }u u T

i i iX q associated with i  in  . Now, the homogeneous solutions 0

huU  and 0 ( )hu Q are given by 

 

 0 ( ) ( ) ( )hu          U C C      (67) 

 0 ( ) ( ) ( )hu q q        Q C C      (68) 

 

where   and   are diagonal matrices obtained by replacing the diagonal entries i  of the matrices 

and  by a function i , respectively; and C  and C are vectors containing arbitrary constants 

representing the contribution of each mode. It is apparent that the diagonal entries of   become infinite 

when    whereas those of   is unbounded when 0  . As a result, C  is taken to be 0 to ensure 

the boundedness of the solution for unbounded bodies and, similarly, the condition  C 0  is enforced for 
bodies containing the scaling center. 
 

3.2. Determination of Particular Solution 
 

In the present study, the distributed body source b , the prescribed surface flux 1

st  on the side-face-1, the 

prescribed surface flux 2

st  on the side-face-2, and the prescribed state variable hcU  on the side faces are 

assumed to admit the form 
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*

( , ) ( )j

j

js s




 


 b b ,
*

1

1 ( ) j

j

s s

j





 


 t t ,  
*

2

2 ( ) j

j

s s

j





 


 t t ,  
*

( ) j

j

hc hc

j





 


 U U   (69) 

 

where *  denotes a set of non-negative real numbers, ( )j sb  are given vector-value functions, and 1s

jt , 

2s

jt , hc

jU  are given constant vectors. Substituting (69) into (43), (45) and (53) yields 

 

 
*

j

j

b b

j








 F F ,   
*

1

1
j

j

t t

j








 F F ,   
*

2

2
j

j

t t

j








 F F ,   
*

j

j

suu suu

j








 F F   (70) 

 

where b

jF , 1t

jF , 2t

jF , and suu

jF  are constant vectors defined, in terms of prescribed data, by 

 

   
  

  
  
  
2 2 2

1 1 1

(1) ( 2 ) ( )( ) ( ) ( )

T
s s s

b h h h

j j j m j

s s s

s J ds s J ds s J dsF b b b   (71) 

 1 1

1{ }t h s

j jJ F t 0 0 ,  2 2

2{ }t h s T

j jJ F 0 0 t   (72) 

  0 0 1 1 2( 1) ( ( ) )suu uc uc cu T uc uc hc

j j j j j       F E E E E E U   (73) 

 
Based on this form of prescribed data and the method of undetermined coefficients, the particular solution 

of (51), denoted by 1

huU , takes the form 

 

 1 2

1 1 1 1 1( ) ( ) ( ) ( ) ( )hu hub hut hut huu       U U U U U   (74) 

 
where 
 

 
*

2

1 ( ) j

j

hub b

j





 




 U c ,   
*

11 1

1 ( ) j

j

hut t

j





 




 U c ,   
*

12 2

1 ( ) j

j

hut t

j





 




 U c ,   
*

1 ( ) j

j

huu uc

j





 


 U c   (75) 

 

with b

jc , 1t

jc , 2t

jc , and uc

jc  being vectors of unknown constants determined from the following four 

systems of linear algebraic equations 
 

  0 0 1 1 2( 2)( 1) ( 2) ( )uu uu uu T uu uu b bu

j j j j j             E E E E E c F 0   (76) 

   1 1

0 0 1 1 2( 1) ( 1) ( )uu uu uu T uu uu t tu

j j j j j            E E E E E c F 0   (77) 

   2 2

0 0 1 1 2( 1) ( 1) ( )uu uu uu T uu uu t tu

j j j j j            E E E E E c F 0   (78) 

  0 0 1 1 2( 1) ( 1) ( )uu uu uu T uu uu uc suu

j j j j j            E E E E E c F 0   (79) 

 

where bu

jF , 1tu

jF  and 2tu

jF  result from the following partitions {   }b bu bc T

j j jF F F , 1 1 1{   }t tu tc T

j j jF F F , and 

2 2 2{   }t tu tc T

j j jF F F , respectively. Once the particular solution 1 ( )hu U  is obtained, the corresponding 

particular nodal internal flux, denoted by 1 ( )hu Q , is calculated from 

 

 1 0 1, 1 1( ) ( )hu uu hu uu T hu

  Q E U E U   (80) 

 
3.3. Final General Solution 
 

The general solution ( )hu U  of (51) and the corresponding nodal internal flux ( )hu Q  are given by 
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0 1 1( ) ( ) ( ) ( ) ( ) ( )hu hu hu hu               U U U C C U      (81) 

 
0 1 1( ) ( ) ( ) ( ) ( ) ( )hu hu hu q q hu              Q Q Q C C Q      (82) 

 

By enforcing conditions on both inner and outer boundaries (i.e., 1 1( )hu u  Q P ,  2 2( )hu u Q P ), it leads 

to a systems of linear equations governing all constants contained in C  and C : 
 

 1 1 1 1 1

2 2 2 1 2

( ) ( ) ( )

( ) ( ) ( )

q q u hu

q q u hu

  

  

    

    

       
       

       

C P Q

C P Q

   

   
  (83) 

 
The system (83) can be, in principle, inverted to obtain 
 

 

1

1 1 1 1 1

2 2 2 1 2

( ) ( ) ( )

( ) ( ) ( )

q q u hu

q q u hu

  

  

    

    

        
          

        

C P Q

C P Q

   

   
  (84) 

 

By first applying (81) to obtain huU  at 1   and 2  , and then using the relation (84), it leads to 

 

 1 1 1 1 1 1

2 2 1 2 1 2

( ) ( ) ( )

( ) ( ) ( )

hu u hu hu

hu u hu hu

  

  

       
         

       

U P U Q
K K

U P U Q
  (85) 

 

where the coefficient matrix K , commonly termed the stiffness matrix, is given by 
 

 

1

1 1 1 1

2 2 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

q q

q q

 

 

   

   

       

       

   
    
   

K
       

       
  (86) 

 
By enforcing the prescribed surface flux and the state variable on both inner and outer boundaries, a system 
of linear algebraic equations (85) is sufficient for determining all unknowns contained in the vectors 

1 2{ ( ) ( )}hu hu T U U  and 1 2{ }u u TP P . Once the unknowns on both inner and outer boundaries are 

solved, the constant vectors C  and C  can be obtained from (84) and the general solution for both 

( )hu U  and ( )hu Q  are obtained from (81) and (82), respectively. 

 
3.4. Post-process for Field Quantities 
 

Once the approximate general solution ( )hu U  is obtained, the approximate field quantities such as the 

state variable and the surface flux within the body can be determined. For instance, the approximate state 

variable at ( , )s  can be obtained from 
 

 
( )

( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

hu

h S h Su Sc Su hu Sc hc

hc
s s s s s s


   



 
      

 

U
u N U N N N U N U

U
  (87) 

 

where SuN  and ScN  are matrices resulting from the partition of SN . Similarly, the approximate body 
flux can be computed from 
 

 1 2 1 2

1 1h u hu u hu c hc c hcs s s s s     
 

   
      

   
D B U B U D B U B U , ,( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )   (88) 

 

where 1

uB , 1

cB  and 2

uB , 2

cB  are matrices resulting from the partition of the matrices 1B  and 2B , 

respectively. It is emphasized here again that the solutions (87) and (88) also apply to the special cases of 
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bounded and unbounded bodies. For bounded bodies containing the scaling center, C simply vanishes 

and, for unbounded bodies,  C 0 . 
 

4. Numerical Results and Discussion 
 
Numerical results of four representative problems are presented, in this section, to verify both the 
formulation and the implementation of the proposed technique. To demonstrate its capability to treat a 
variety of boundary value problems, general boundary conditions, and prescribed data on the side faces, 

three different types of problems associated with steady-state heat conduction ( 1  ), linear elasticity 

( 2  ), and linear piezoelectricity ( 3  ), under various scenarios are considered. In the approximation, 
standard linear finite elements are employed to discretize both the defining curve and the trial and test 
functions. The accuracy and convergence of numerical solutions are confirmed by benchmarking with 
available analytical solutions and carrying out the analysis via a series of meshes. 
 
4.1. Heat Conduction in Rectangular Domain 
 
The proposed technique is first tested with a representative problem associated with the steady-state heat 

conduction ( 1  ). Let us consider a two-dimensional rectangular domain of dimensions 1l  and 2l  as 

shown schematically in Fig. 5(a). The domain is made of a medium with an isotropic heat conductivity 0k  

(or, equivalently, 11 22 0 12 21, 0D D k D D    ) and subjected to a uniform heat source 1 0b Q . A zero 

temperature is prescribed along the boundary AD (i.e., 1 0ADu  ) and a uniform surface heat flux 0q  is 

prescribed along the boundary BC (i.e., 1 0

BCt q ) whereas, along the boundaries AB and CD, the surface 

heat flux vanishes (i.e., 1 1 0AB CDt t  ). For this particular case, the exact solution for the temperature field 

(i.e., 1( )u x ) and body heat flux (i.e., 11( )x  and 21( )x ) is given by    

 

 2

1 0 0 1 1 0 1

0

1 1
( )

2
u q Q l x Q x

k

 
    

 (89) 

 
11 0 0 1 1 21( ),    0q Q l x      (90) 

 
 
 

 
 
Fig. 5. Schematic of (a) rectangular domain under body heat source and mixed boundary conditions and 
(b) scaling center and defining curve used in scale boundary finite element analysis. 
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The domain geometry is described by the scaling center at point D and the defining curve ABC; as a result, 

the boundaries AD and CD become the side faces (see Figure 5(b)). In the numerical study, 0q  and 0Q  are 

chosen such that 0 1 03Q l q  and the defining curve is discretized by a series of N identical linear elements. 

The normalized temperature 1 0 0 1/u k q l  and the non-zero normalized body heat flux 11 0/q  along the 

boundary AB are reported in Table 1 for various values of normalized coordinate 1 1 1/x x l  and meshes. 

Clearly, computed numerical solutions exhibit an excellent convergence behavior as the number of 
elements increases and, in addition, accurate results in comparison with the benchmark solution can be 
obtained even when few elements are employed to discretize the defining curve and solution along the 
boundary direction. 
 
4.2. Linear Elastic Hollowed Cylinder under Uniform Pressure 
 

Consider, next, a hollowed cylinder of the inner radius 1R  and outer radius 2R  (see Figure 6(a)). The 

cylinder is made of a homogeneous, linearly elastic, isotropic material with Young’s modulus E  and 

Poisson’s ratio   and is subjected to a plane-strain condition and uniform pressure 1p   and 2p  on the 

inner and outer boundaries, respectively, (i.e., 2   and the modulus matrix D  with non-zero entries  

11 44 (1 ) /(1 )(1 2 )D D E       , 14 /(1 )(1 2 )D E     , 41 /(1 )(1 2 )D E     ,  22 23 32D D D

  33 /2(1 )D E ). Due to the symmetry, it is sufficient to model this problem using only a quarter of the 

cylinder (see Figure 6(b)) with appropriate conditions on both side faces (i.e., the normal displacement and 
tangential traction on the side faces vanish). To describe the geometry, the scaling center is chosen at the 
center of the cylinder whereas the inner boundary is treated as the defining curve. In a numerical study,

2 1/ 1.5R R  , 2 1/ 2p p  , 0.3  , and meshes with N  identical linear elements are employed. 

Results for the normalized radial displacement ( 1 1/( / )ru p R E , normalized radial stress ( 1/rr p ) and 

normalized hoop stress ( 1/p ) are reported along with existing analytical solutions [36] in Tables 2, 3 and 

4, respectively, for four meshes (i.e., 4,8,16,32N  ). It is seen that numerical solutions generated by the 

proposed technique converge and exhibit excellent agreement with the benchmark solution. It is worth 
noting that the discretization with only few linear elements can capture numerical solution with sufficient 
accuracy. 

 

 
 
Fig. 6. Schematic of (a) hollowed cylinder under uniform internal and external pressure and (b) quarter of 
cylinder used in the analysis. 
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Table 1. Normalized temperatures and body heat flux along the boundary AB of a rectangular domain 

subjected to body heat source and mixed boundary conditions. 
 

   1 0 0 1/u k q l     

1x  0.0 0.2 0.4 0.6 0.8 1.0 

SBFEM, N=4 0.0000 0.7196 1.3287 1.8290 2.2175 2.4684 
SBFEM, N=8 0.0000 0.7352 1.3520 1.8512 2.2332 2.4950 
SBFEM, N=16 0.0000 0.7388 1.3580 1.8577 2.2382 2.4986 
SBFEM, N=32 0.0000 0.7397 1.3595 1.8594 2.2395 2.4996 
Exact solution 0.0000 0.7400 1.3600 1.8600 2.2400 2.5000 

   11 0/q     

1x  0.0 0.2 0.4 0.6 0.8 1.0 

SBFEM, N=4 3.8735 3.3211 2.7724 2.2297 1.6359 0.8099 
SBFEM, N=8 3.9709 3.3802 2.7890 2.2037 1.6121 1.0222 
SBFEM, N=16 3.9929 3.3950 2.7970 2.2005 1.6034 1.0006 
SBFEM, N=32 3.9982 3.3988 2.7992 2.2001 1.6008 1.0000 
Exact solution 4.0000 3.4000 2.8000 2.2000 1.6000 1.0000 

 
Table 2. Normalized radial displacement of hollowed cylinder under internal and external uniform 

pressure. Results are reported at different values of radial coordinate 2 2

1 2r x x   for four meshes. 

 

   
1 1/( / )ru p R E     

1/r R  1.0 1.1 1.2 1.3 1.4 1.5 

SBFEM, N=4 1.0958 0.9864 0.8943 0.8155 0.7473 0.6875 
SBFEM, N=8 1.1124 1.0014 0.9080 0.8282 0.7590 0.6984 
SBFEM, N=16 1.1166 1.0052 0.9115 0.8313 0.7619 0.7011 
SBFEM, N=32 1.1177 1.0061 0.9123 0.8321 0.7627 0.7018 
Exact solution 1.1180 1.0064 0.9126 0.8324 0.7629 0.7020 

 

Table 3. Normalized radial stress of hollowed cylinder under internal and external uniform pressure. 

Results are reported at different values of radial coordinate 2 2

1 2r x x   for four meshes. 

 

    1/rr p     

1/r R  1.0 1.1 1.2 1.3 1.4 1.5 

SBFEM, N=4 -0.9821 -0.8289 -0.7124 -0.6217 -0.5497 -0.4917 
SBFEM, N=8 -0.9955 -0.8401 -0.7218 -0.6298 -0.5568 -0.4979 
SBFEM, N=16 -0.9989 -0.8429 -0.7242 -0.6319 -0.5586 -0.4995 
SBFEM, N=32 -0.9997 -0.8436 -0.7248 -0.6324 -0.5590 -0.4999 
Exact solution -1.0000 -0.8438 -0.7250 -0.6325 -0.5592 -0.5000 

 
Table 4. Normalized hoop stress of hollowed cylinder under internal and external uniform pressure. 

Results are reported at different values of radial coordinate 2 2

1 2r x x    for four meshes. 

 

    1/ p     

1/r R  1.0 1.1 1.2 1.3 1.4 1.5 

SBFEM, N=4 0.7833 0.6301 0.5136 0.4229 0.3510 0.2929 
SBFEM, N=8 0.7958 0.6404 0.5222 0.4301 0.3571 0.2982 
SBFEM, N=16 0.7990 0.6429 0.5243 0.4319 0.3587 0.2996 
SBFEM, N=32 0.7997 0.6436 0.5248 0.4324 0.3591 0.2999 
Exact solution 0.8000 0.6438 0.5250 0.4325 0.3592 0.3000 
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4.3. Linear Elastic Square Plate under Mixed Boundary Conditions 
 

Another representative problem for linear elasticity ( 2  ) is chosen to demonstrate the capability of the 
implemented procedure to treat problems with distributed body source and prescribed state variable and 

surface flux on the boundary. Consider a plane-strain, square plate ABCD of dimension l l  and made of 

a homogeneous, isotropic, linearly elastic material of Young’s modulus E  and Poisson’s ratio   as shown 

schematically in Figure 7(a). Note that the modulus matrix D  for this particular problem is the same as the 

previous case. The plate is subjected to a linear body force field 1 0 2 2 0 12 (1 ),  2 (1 )b b x b b x     with 0b

denoting a constant and 1 1/x x l , 2 2/x x l  denoting the normalized coordinates whereas the 

nonuniform traction and homogeneous displacement boundary conditions are prescribed on its four sides 
as follows: 
 

Side AB: 2

1 0 1 1(3 14 )ABt b l x x    and 2

2 0 1 12 ( 4 4 3 )ABt b l x x     

Side BC: 2

1 0 26 ( 2)BCt b l x   and 2

2 0 2 2(1 14 )BCt b l x x    

Side AD: 1 0ADu   and 2

2 0 2 2(2 )ADt b l x x    

Side CD: 2

1 0 1 1( 2 )CDt b l x x   and 2 0CDu   

 
The exact solution for this particular problem under the plane strain condition can be readily obtained from 
a classical theory of linear elasticity and final results are given by 

 

 
Fig 7. Schematic of (a) elastic square plate under mixed boundary conditions and (b) scaling center and 
defining curve used in scale boundary finite element analysis. 
 

 2 2 2

1 0 1 2 1 2 1 2 12 (1 )(1 2 3 )exactEu b l x x x x x x x          (91) 

 2 2 2

2 0 1 2 1 2 1 2 22 (1 )( 1 2 3 )exactEu b l x x x x x x x           (92) 

 2 2

11 22 0 1 2 1 2 1 22 (1 2 2 3 3 2 )exact exact b l x x x x x x            (93) 

 2 2

12 0 1 2 1 2 1 2( 2 2 12 )exact b l x x x x x x          (94) 

 
The geometry of the plate is fully described by the scaling center at point D and the defining curve ABC 
and, as a result, the boundaries AD and CD become the side faces (see Figure 7(b)). In the analysis, 
Poisson’s ration is taken as 0.3   and the defining curve is discretized by N identical linear elements. The 
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normalized displacements 2

1 0/Eu b l  and 2

2 0/Eu b l  along the boundaries AB and BC are reported in Tables 

5 and 6 for various locations and meshes. It can be seen that numerical solutions converges to the exact 
solution as the number of elements N used to discretize the defining curve increases and, in addition, only 
few number of degrees of freedom is sufficient to obtain accurate  displacements. The normalized normal 

stress components 11 0/b l  and 22 0/b l  along the boundaries CD and AD are also reported in Figures 8 

and 9 along with the exact solution. Similar to the displacements, the proposed method also yields highly 
accurate stress components and the good convergent behavior; in particular, results obtained from all 
meshes are nearly indistinguishable from the benchmark solution. 
 
Table 5. Normalized displacements along the boundary AB of elastic square plate subjected to mixed 
boundary conditions. 
 

   2

1 0/Eu b l     

1x  0.0 0.2 0.4 0.6 0.8 1.0 

SBFEM, N=8 0.0000 1.8132 3.0677 3.6989 3.5973 2.6088 
SBFEM, N=16 0.0000 1.8340 3.1482 3.7916 3.6349 2.6036 
SBFEM, N=32 0.0000 1.8489 3.1558 3.7996 3.6578 2.6013 
SBFEM, N=64 0.0000 1.8501 3.1608 3.8055 3.6592 2.6004 
Exact solution 0.0000 1.8512 3.1616 3.8064 3.6608 2.6000 

   2

2 0/Eu b l     

1x  0.0 0.2 0.4 0.6 0.8 1.0 

SBFEM, N=8 -2.7256 -0.7721 1.8011 4.9689 8.6766 12.8397 
SBFEM, N=16 -2.6262 -0.7306 1.7661 4.8982 8.6579 12.9369 
SBFEM, N=32 -2.6051 -0.7310 1.7700 4.8929 8.6363 12.9780 
SBFEM, N=64 -2.6009 -0.7281 1.7679 4.8886 8.6333 13.0038 
Exact solution -2.6000 -0.7280 1.7680 4.8880 8.6320 13.0000 

 
Table 6. Normalized displacements along the boundary BC of elastic square plate subjected to mixed 
boundary conditions. 
 

   2

1 0/Eu b l     

2x  0.0 0.2 0.4 0.6 0.8 1.0 

SBFEM, N=8 -7.9407 -7.0248 -5.5067 -3.3831 -0.6694 2.6008 
SBFEM, N=16 -7.8346 -6.9726 -5.5213 -3.4319 -0.7027 2.6012 
SBFEM, N=32 -7.8086 -6.9716 -5.5119 -3.4297 -0.7246 2.6006 
SBFEM, N=64 -7.8021 -6.9683 -5.5126 -3.4320 -0.7268 2.6143 
Exact solution -7.8000 -6.9680 -5.5120 -3.4320 -0.7280 2.6000 

   2

2 0/Eu b l     

2x  0.0 0.2 0.4 0.6 0.8 1.0 

SBFEM, N=8 0.0000 3.0812 6.0130 8.7017 11.0266 12.8397 
SBFEM, N=16 0.0000 3.0922 6.0621 8.7806 11.1096 12.9369 
SBFEM, N=32 0.0000 3.0978 6.0699 8.7924 11.1408 12.9780 
SBFEM, N=64 0.0000 3.0988 6.0729 8.7973 11.1465 13.0038 
Exact solution 0.0000 3.0992 6.0736 8.7984 11.1488 13.0000 

 

4.4. Linear Piezoelectric Square Plate 
 
As a final example, a representative boundary value problem associated with the linear piezoelectricity 

( 3  ) is investigated to further highlight the capability of the proposed technique to treat linear multi-

field problems. Let us consider a two-dimensional square plate of length l and made of a linear 
piezoelectric solid with all material constants taken from PZT-4 [5] as shown in Figure 10(a). In particular, 

all non-zero entries of the modulus matrix D  are given explicitly by 11 139 D GPa ,  15 51 74.3 D D GPa , 
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   2

16 61 6.98 D D Cm ,    22 24 42 44 25.6 D D D D GPa ,    9 1

33 6.0 10  ( )D C Vm ,  34 43D D
213.44 Cm , 55 113 D GPa ,   2

56 65 13.84 D D Cm , and    9 1

66 5.47 10  ( )D C Vm . For a purpose of 

verification, a set of prescribed data such as the distributed body source and boundary conditions on four 

sides is chosen such that the exact solution for the displacements ( 1u  and 2u ) and the electric potential ( 3u ) 

takes the following form  
 

  
 
Fig. 8 Normalized normal stress components along the boundary CD of elastic square plate subjected to 
mixed boundary conditions. 
 

  
 

Fig. 9. Normalized normal stress components along the boundary AD of elastic square plate subjected to 
mixed boundary conditions. 
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Fig. 10. Schematic of (a) linear piezoelectric square plate under mixed boundary conditions and (b) scaling 
center and defining curve used in scale boundary finite element analysis. 
 

 2

1 10 1u u x ,  2

2 20 2u u x ,  3 0 2u x  (95) 

 

where 10u , 20u , 0 are given constants and 1 1/x x l , 2 2/x x l  are normalized coordinates. The 

corresponding exact stress field ( 11 12 21 22, , ,    ) and electrical induction vector ( 13 23,  ) are given by 

 

 
11 11 10 1 15 20 2 16 0 12 21(2 2 )/ ,    0,   D u x D u x D l         (96) 

 
22 15 10 1 55 20 2 56 0(2 2 )/D u x D u x D l     (97) 

 
13 23 16 10 1 56 20 2 66 00,    (2 2 )/D u x D u x D l           (98) 

 
The distributed body source that is in equilibrium with the above stress and electric induction can readily be 
obtained from (4) as 
 

 2 2 2

1 11 10 2 55 20 3 56 202 / ,    2 / ,    2 /b D u l b D u l b D u l       (99) 

 
In the modeling, the scaling center is chosen at a point D and the prescribed conditions on the side faces 
AD and CD and the boundaries AB and BC are given below 
 

Side AB: 1 0ABt  , 2 15 10 1 55 20 56 0(2 2 )/ABt D u x D u D l   , 3 16 10 1 56 20 66 0(2 2 )/ABt D u x D u D l    

Side BC: 1 11 10 15 20 2 16 0(2 2 )/BCt D u D u x D l   , 2 0BCt  , 3 0BCt   

Side AD: 1 0ADu ,  2

2 20 2

ADu u x , 3 0ADt   

Side CD: 1 0CDt  , 2 0CDu , 3 0CDu  

 
It is worth noting that the boundary conditions shown above are chosen to represent the general prescribed 
data on the side faces and boundaries of the domain. In the numerical study, a series of meshes with N 
identical linear elements is constructed to discretize the defining curve and solution along the scale 

boundary direction and 20 10/ 2u u  , 16 0 11 10/ 1D D u   are employed. Computed displacements and electric 

potential along the diagonal line BD are reported in Table 7 for various meshes. It is seen for this particular 
problem that the proposed technique yield highly accurate results even when relatively coarse meshes 
containing only few degrees of freedom are employed. In addition, the improvement of solutions as the 
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mesh is refined is clearly observed. The good quality of numerical solutions is also confirmed for the body 
flux as indicate in Figures 11 and 12. Computed stresses and electrical induction along the diagonal line BD 
show an excellent agreement with the exact solution; in particular, only slight difference between solutions 
can be seen for very coarse meshes while almost indistinguishable results are obtained for fine meshes. 
 
Table 7. Normalized displacements and electrical potential along the diagonal line BD of linear 
piezoelectric square plate subjected to mixed boundary conditions. Results are reports as a function of 

normalized length  / 2s s l  where s  is the length along the line BD measured from point D.  
 

   
1 10/u u     

s  0.0 0.2 0.4 0.6 0.8 1.0 

SBFEM, N=4 0.0000 0.0369 0.1351 0.3278 0.6291 1.0459 
SBFEM, N=8 0.0000 0.0393 0.1531 0.3503 0.6360 1.0252 
SBFEM, N=16 0.0000 0.0398 0.1582 0.3574 0.6385 1.0098 
SBFEM, N=32 0.0000 0.0400 0.1596 0.3593 0.6396 1.0033 
Exact solution 0.0000 0.0400 0.1600 0.3600 0.6400 1.0000 

   2 20/u u     

s  0.0 0.2 0.4 0.6 0.8 1.0 

SBFEM, N=4 0.0000 0.0821 0.3272 0.7222 1.2554 1.9134 
SBFEM, N=8 0.0000 0.0803 0.3220 0.7213 1.2739 1.9679 
SBFEM, N=16 0.0000 0.0801 0.3205 0.7204 1.2786 1.9891 
SBFEM, N=32 0.0000 0.0800 0.3201 0.7201 1.2797 1.9965 
Exact solution 0.0000 0.0800 0.3200 0.7200 1.2800 2.0000 

   3 0/u     

s  0.0 0.2 0.4 0.6 0.8 1.0 

SBFEM, N=4 0.0000 0.2013 0.4019 0.6013 0.7991 0.9938 
SBFEM, N=8 0.0000 0.2003 0.4004 0.6003 0.7998 0.9976 
SBFEM, N=16 0.0000 0.2001 0.4001 0.6001 0.7999 0.9992 
SBFEM, N=32 0.0000 0.2000 0.4000 0.6000 0.8000 0.9997 
Exact solution 0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 

 

 
 

Fig. 11. Normalized non-zero stress components along the diagonal line BD of a piezoelectric square plate 

subjected to mixed boundary conditions. Results are reports as a function of normalized length  / 2s s l  

where s  is the length along the line BD measured from point D. 
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Fig. 12. Normalized a non-zero electrical induction component along the diagonal line BD of a 
piezoelectric square plate subjected to mixed boundary conditions. Results are reports as a function of 

normalized  / 2s s l  where s  is the length along the line BD measured from point D. 

 

5. Conclusion and Remarks 
 
A numerical technique based upon the scaled boundary finite element method (SFBEM) has been 
successfully developed for solving two-dimensional, multi-field boundary value problems. Both the 
formulation and implementations have been established in a general framework allowing various classes of 
linear boundary value problems (e.g., steady-state heat conduction problems, Laplace’s equation, linear 
elasticity, linear piezoelectricity, etc.) and a set of general data such as the domain geometry, the prescribed 
distributed body source, the prescribed boundary conditions, and the contribution of the side-face 
conditions to be treated in a single, unified fashion. Results from an extensive numerical study for various 
scenarios have revealed that the proposed SBFEM yields highly accurate numerical solutions with the good 
convergence behavior. Relatively coarse meshes containing only few degrees of freedom have been found 
to accurately capture both the state variable and the body flux. In particular, both prescribed state variables 
and prescribed surface flux along the side faces and the general mixed boundary conditions along the scale 
boundary direction have been implemented into the proposed procedure and this, therefore, provides the 
flexibility in the selection of the scaling center and defining curve for describing the domain geometry. 

Although the proposed technique has been implemented within the context of two-dimensional 
boundary value problems with domains described by a single scaling center, its underlying formulation and 
computational procedure are sufficiently general and should provide an essential basis for the extension to 
treat more general bodies such as those requiring multiple scaling centers to fully describe their geometry. 
Another potential extension is to generalize the present unified framework to three-dimensional multi-field 
problems. 
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