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Abstract. The General Lot-sizing and Scheduling Problem (GLSP) is a common problem 
found in continuous production planning. This problem involves many constraints and 
decisions including machine capacity, production lot-size, and production sequence. This 
study proposes a two-phase algorithm for solving large-scale GLSP models. In Phase 1, we 
generate patterns with a specific batch size and capacity and in Phase 2, based on the patterns 
selected in Phase 1, we optimize the production allocation. Additionally, the external 
supplies are included in the formulation to reflect the real situation in business with limited 
resources. In this work, the justification of the formulation is based on the ability of solving 
and calculation time. The proposed formulation was tested on eight scenarios. The results 
show that the proposed formulation is more tractable and is easier to solve than the GLSP.  
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1. Introduction 
 
In manufacturing, an operation requires several planning levels, including strategic, tactical, and operational 
levels. Strategic planning is the core component of planning because it has to match with the business 
direction. It involves making decisions such as facility location, facility design, and network design, and often 
spans long planning horizons.  Tactical planning involves balancing the demand and supply of each product 
family over the medium term.  The focus is often profit maximization. By contrast, operation planning often 
focuses on cost while adhering to the tactical plan from the previous stage.  

Production scheduling is one of the most essential tasks in operation planning. It dictates what actions 
are required on a daily or hourly basis as well as the types and quality of the products required for production, 
according to the fluctuation in the demand, operation configuration, and production capacity. Often times 
the decisions include the appropriate inventory levels needed in order to buffer the variations in demand and 
production uncertainty in each period. Similar to any inventory management situation, the objective here is 
to minimize inventory investment while meeting the necessary service levels. The production scheduling 
process can often be formulated as a linear program, which considers demand, inventory carrying cost, and 
production capacity. Solving this problem is straightforward and effective for use in an actual business setting 
when the linearity assumption holds. 

In Continuous production, the Changeover Cost is an important variable of production planning, as 
converting from one product to another product might lead to the cost of the operation. Changeover Cost 
refers to the additional cost when the production sequence is altered; the cost of a skipped or reversed 
sequence is normally higher than maintaining the regular sequence. The production scheduling has to be 
carefully concerned with reducing unnecessary changeover from period to period.  

The Minimum lot size of the production is another characteristic of continuous production. The 
minimum size of production for each product must be produced before changeover to other product. 
According to this limitation, the inventory helps to minimize the production cost by carrying the product 
that exceeds the current demand to the next period. 

Adding lot-size and sequence consideration into production scheduling leads to a transformation of the 
calculation from the Linear Programming (LP) to the Mixed Integer Programming (MILP), caused by lot-
size and production sequence consideration. The setting up status in each period are defined as the binary 
variables, in addition, the min-lot consideration are casted as the integer variable. Both sets of the discrete 
variables add complexity into the formulation. The General Lotsizing and Scheduling Problem (GLSP), 
classified as the Non-Deterministic Polynomial-time hard Problem (NP-hard), requires a huge number of 
computational time for solving this problem. The exact methodology to solve this problem will be facing the 
fractional set of the binary variables during computation. These fractional parts are the cause of the weak 
bound in the branch-and-bound technique that influences the branching technique in an appropriate 
direction and the results of the large number of iterations in the computation. Enormous resources such as 
memory and computational time are required for finding the solution. 

 

 
 
Fig. 1. Sample of the production schedule. 
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Fig. 2. Changeover Cost from product i to product j (sij) . 

 
The example of the Production Schedule is shown in Fig. 1. The production number in each period is 

indicated as xjs. In the micro-period s0 the planned production was on product j
0
 with the amount of x00. In 

these 6 example periods the production was on product j
0
,  j

2
 ,j

3
 ,j

0
 ,j

1
 and j

2
 respectively. The plan shown 

that change over from product i to product j was orderly assigned. The Changeover Cost from product i to 

product j (sij)  is illustrated in Fig. 2. The solid line shows the minimum changeover cost from one product 

to another product and the dash line shows the more expensive changeover from product to product.  
 

 
 

Fig. 3. Changeover Variable from product i to product j in time s (z
ijs

). 

 

The large number of binary variable is the Changeover variable (z
ijs

) and this binary variable indicates the 

changeover stage from product i to product j in time s. The number of z
ijs

 is equal to the number of the 

product multiplied by the number of product and multiplied by the number of the micro-period (|J|2×|S|). 
This set of variables will increase exponentially when the number of products is increased. As a result, the 
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increasing of this variable is the adding complexity of the problem. During the LP relaxation, this set of 
variables will be the fractional part, the part that makes weak bound on the problem.  

This paper proposes an improvement of the GLSP by formulating a model tackling the important part 
of the formulation and the bound from LP relaxation that is used for determining the solution gap of the 
incumbent solution. The tighter bound may lead to the calculation of the exact methodology to effectively 
answer this sophisticated problem with less memory usage and computational time.    
 

2. Related Works/ Literature Review 
 
2.1. Formulation 
 
Fleischmann and Meyr (1997) [1] proposed a complex version of the production scheduling problem known 
as the General Lotsizing and Scheduling Problem (GLSP), with sequence considerations added into the formulation. 
In each setup, changing from one product to other products affects the production cost as it also depends 
on the sequence of the changeover. With the sequence consideration included, the discrete variables were 
introduced into the formulation by defining and setting up the variables between the changed products. 

The GLSP contains an objective function that consists of two parts. The first part is an inventory holding 
cost of each Product in each Macro-Period. The second part is a setup cost of production changeover from 
Product i to Product j in each Micro-Period (if needed). This is subject to the constraints to cover the demand 
volume of each Product to be fulfilled in each Macro-Period with the number of inventory carried to the 
next Macro-Period. The capacity constraints cover how much machine time in each Macro-Period and how 
much machine time is used for production. This constraint calculates how much machine time is used to 
produce each Product in each Macro-Period, and how much machine time is used in the production setup to 
transform from Product i to Product j. The other set of constraints is used to determine which Product has 
been set up for Product j in Micro-Period s, to set each production lot needed to produce at least a minimum 
run for each product and to set up for only one Product in each Micro-Period. The last set of constraints is 
used to determine when the production changeover from Product i to Product j occurs. With GLSP the 
number of discrete variables required is huge, and this formulation does not cover backlogging.  
 
2.2. Solution Methodology 
 
Production scheduling has been categorized into 5 groups by Drexl and Kimms (1997) [2]: 1) the capacitated 
lot sizing problem, 2) the discrete lot sizing and scheduling problem, 3) the continuous setup lot sizing 
problem, 4) the proportional lot sizing and scheduling problem, and 5) the general lot sizing and scheduling 
problem. The Capacitated Lotsizing Problem with sequence dependent Setup Cost (CLSD) was introduced by Haase 
(1996) [3] and is similar to The General Lotsizing and Scheduling Problem (GLSP) Fleischmann and Meyr (1997) 
[1]. The GLSP has been used in many recent studies in which researchers have introduced improvements in 
both the exact and heuristics approach.  

The Lagrangian Relaxation method was used by Chen and Thizy (1990) [4] on several constraints such 
as setup, demand and capacity constraints. The method is also involved with the subgradient optimization 
and column generations in node-arc formations using the shortest path technique. The lower bound 
improvement, achieved by adding cutting plane to the formulation, was introduced by Belvaux and Wholsey 
(2001) [5]. It categorized the startup and changeover into four parts: 1) Small bucket model, 2) one setup per 
period, 3) two setup per period, and 4) big bucket model with changeovers. In addition, they also introduced 
the minimum production runs and full-capacity production. However, the drawback of this formulation is 
the changeover variable that uses a discrete variable that makes the model more complex. An improvement 
of exact methodology was the modified branch and bound enumeration method, which was introduced by 
Haase and Kimms (2000) [6]. It stated that in period T, perform a branching step by choosing a sequence 
and doing calculations to choose whether the model needs to move on to period one step by step by doing 
backtracking in-between if necessary. The multi-level MILP formulation for Medium-Range Production 
Scheduling of a Multiproduct Batch Plant was introduced by Lin et al. (2002) [7] by dividing the problem into 
the category stage and product stage. This approach applied the lower memory space usage to lower bounding 
in iterations.  

There are many techniques to approaching the NP-Hard problem. In the survey of Woeginger (2003) [8] 
it was shown that the researcher used Dynamic Programming, Pruning the Search Tree, Preprocessing the 
Data and Local Search depending on the characteristics of the problem. The Mixed Integer Dynamic 
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Optimization (MIDO) was used by researchers such as Held and Karp (1962) [9], Bansal et al. (2003) [10], 
Prata et al. (2008) [11], and Chu and You (2013) [12]. The Mixed-Integer Linear Fractional Programming 
(MILFP) also introduced for the cycle process scheduling problem by You (2009) [13]. The Searching over 
Separator Strategy also was introduced by Hwang et al. (1993) [14] by dividing the problem into two 
subproblems in which the results from both subproblems were combined as an optimal solution. 
Furthermore, Drori and Peleg (2001) [15] proposed an algorithm recursively partitioned the problem domain 
and eliminated some branches during calculations. All techniques have been used for tackling the 
optimization of the complex and time consumed problem. 

The heuristics methodology was used by various researchers. Meyr (2000, 2002) [16, 17] also improved 
his methodology by using the dual network flow to re-optimize the sub-problem. This methodology evaluated 
the new candidate added back to the current solution to find the better solution using dual price. This 
methodology also used in both single machine consideration and the multi machines scheduling. The three 
steps of heuristics were published by Gupta and Magnusson (2005) [18] by dividing them into three steps: 
Initialize, Sequence and Improve. The Initialize step is used to find initial solutions by determining production 
quantities without sequence consideration. The Sequence step consists of finding the least-costly production 
within each period. The last step, the Improve step is to refine production quantities and production sequence 
in regards to decreasing the total costs. The hybrid of the mathematical programming and the local search 
methods were published by De Araujo et al. (2007) [19]. This hybrid method is called the relax-and-fix 
methodology. It divides the problem into two levels: 1) solving some relaxed integer variables and solving 
relaxed problems, and 2) re-specifying some integer variables and then solving partially fixed problems. The 
heuristics methodology is used to solve both steps to find feasible solutions. The dynamic programming and 
heuristics technique that focus on binary variables related to sequences was introduced by Kovács et al. (2009) 
[20] while running a pre-processer to determine the items that should appear in an optimal solution. 
Combining simulation and optimization was also introduced by Kämpf and Köchel (2006) [21]. The 
simulation was used to find the optimal parameters before feedbacking to the optimization for optimizing 
and assessing the value from the simulator for the possibility of optimality.  
 

3. Methods 
 
The General Lotsizing and Scheduling Problem using Two Phases with External Supply (GLSP-TE) tackles the 
computational time consumption of the GLSP by separating the computation steps into two phases. Phase 
One is the Pattern generation with a Specific Batch size and Capacity Phase Two is the Production Allocation 
using a Specified Pattern. An additional feature of the GLSP -TE over the GLSP is introducing the external 
supply to adding up the other supply covering the limited capacity. 

Phase One performs the approximate optimization to find the production pattern as shown in Eq. (1) – 
(9), using the following notation to formulate problem: 

Set: 

 St    : Set of Micro-periods 𝑠 belonging to Macro-period t  

J    : Set of Products 

T    : Set of Macro-Period  

S    : Set of Micro-Period 
Parameters: 

Ks 
*   : Modified Capacity (time) available in Micro-period s  

aj    : Capacity consumption (time) needed to produce one unit of j 

hj    : Holding costs of Product j (per unit and per Macro-Period) 

Cjt    : External supply unit cost of Product j in Macro-period t  

sij    : Setup costs of changeover from Product i to Product j  

djt    : Demand of Product j in Macro-period t (units) 

Ij0    : Initial inventory of Product j at the beginning of the planning horizon 

(units) 

y
j0 

     : Equal to 1 of the machine is set up for Product j at the          

     beginning of the planning horizon (0 otherwise) 
Variables: 
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Ijt ≥0    : Inventory of Product j at the Macro-period t (units) 

 Wjt ≥0      : Number of external supply of Product j in Macro-period t (units) 

xjs ≥0   : Quantity of Item j produced in Micro-period s (units) 

y
js 

∈{0,1}  : Setup State: y
js 

=1, if the machine is setup for Product 

  j in Micro-period s (0 otherwise) 

z
ijs 

∈{0,1} : Take on 1, if a changeover from Product i to Product j  

 take place at the beginning of Micro-period 𝑠 (units) 
Phase One: Pattern generation with Specific Batch size and Capacity 
 

 MIN ∑ hjIjt+jt ∑ sijzijs
+ ∑ CjtWjt  jtijs   (1) 

Subject to: 

 Ijt=Ij,t-1+ ∑  s∈St

Ks
*

aj
y
js
+Wjt-djt       ∀t∈T, ∀j∈J (2) 

 ∑ y
js
=1           j  ∀s∈S (3) 

 z
ijs

≥y
i,s-1

+y
j,s

-1    ∀s∈S, ∀i∈I,∀j∈J    (4) 

 Ijt  ≥ 0    ∀t∈T, ∀j∈J (5) 

 Wjt≥ 0      ∀t∈T, ∀j∈J (6) 

 xjs ≥ 0     ∀t∈T, ∀j∈J (7) 

 y
js
 ∈ {0,1}   ∀s∈S, ∀j∈J (8) 

 z
ijs

∈ {0,1}    ∀s∈S, ∀i∈I,∀j∈J (9) 

 

The Objective Function (Eq. (1)) consists of three costs including inventory carrying costs of Product j  

and the cost of the external supply for Product j in Macro-period t and setup costs of change over from 

Product i to Product j in Micro-period s. The formulation is subjected to 3 sets of constraints. The first set 

of constraints represents the conservation of flow that determines the inventory of each Product j and the 

external supply needed, which satisfies demand of Product j in Macro-period t (Eq. (2)). The Ks 
* is the pre-

defined capacity in each Micro-period that is greater than the actual capacity in the Micro-period calculated 
from Macro-period capacity to represent the minimum lot. The second and third set of constraints are 

responsible for the Setup State from Product i to Product j (Eq. (3) and Eq. (4)). The other constraints are 

the Non-Negativity constraint on variable Ijt,Wjt,xjs (Eq. (5) to (7)) and the Binary constraint on variable y
js
,z

ijs
 

(Eq. (8) and Eq. (9)). 

After Phase One calculations, the Setup State variables (y
js 

) have been passed to Phase Two to be used 

as Setup State to calculate the amount of Production Units, as provided in formulations (Eq.10) - (Eq.19) 
using the following notation to formulate the problem: 
 

Set: 

St    : Set of Micro-periods 𝑠 belonging to Macro-period t  

J    : Set of Products 

T    : Set of Macro-Period  

S    : Set of Micro-Period 
Parameters: 

Kt   : Capacity (time) available in Macro-period t  

aj    : Capacity consumption (time) needed to produce one unit of j 

hj    : Holding costs of Product j (per unit and per Macro-period) 

Cjt    : Unit Cost of External supply for Product j in Macro-period t  

sij    : Setup Costs of Changeover from Product i to Product j  

djt    : Demand of Product j in Macro-period t (units) 

mj   : Minimum lotsize for Product j  
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Ij0    : Initial inventory of Product j at the beginning of the planning horizon 

(units) 

y
j0 

     : Equal to 1 of the machine is set up for Product j at the beginning of the 

planning horizon (0 otherwise) 
Variables: 

Ijt   ≥0    : Inventory of Product j at the end of the planning horizon (units) 

 Wjt ≥0   : Number of External supply of Product j in Macro-period t (units) 

xjs  ≥0   : Quantity of Item j Produced in Micro-period s (units) 

y
js 

 ∈ {0,1}  : Setup State:  y
js 

=1 , if the machine is setup for Product j  

  in micro - period s (0 otherwise) 

z
ijs 

∈ {0,1} : Take on 1, if a changeover from Product i to Product j take place at the  

  beginning of Micro-Period s (units) 
 
Phase Two: Production Allocation using Specified Pattern  

MIN ∑ hjIjt+

jt

∑ sijzijs
+ ∑ CjtWjt  

jtijs

                                                                     (10) 

    
    

Subject to: 

 Ijt=Ij,t-1+ ∑  s∈St
xjs+Wjt-djt      ∀t∈T, ∀j∈J (11) 

 ∑ ajxjs≤Kt     j,s∈St
 ∀t∈T (12) 

 z
ijs

≥y
i,s-1

+y
j,s

-1      ∀s∈S, ∀i∈I,∀j∈J (13) 

 xjs≥mj(yjs
-y

j,s-1
) ∀s∈S, ∀j∈J (14) 

 Ijt  ≥ 0 ∀t∈T, ∀j∈J (15) 

 Wjt≥ 0 ∀t∈T, ∀j∈J (16) 

 xjs ≥ 0 ∀t∈T, ∀j∈J (17) 

 y
js
 ∈ {0,1} ∀s∈S, ∀j∈J (18) 

 z
ijs

∈ {0,1} ∀s∈S, ∀i∈I,∀j∈J (19) 

 
The Objective function in (Eq. (10)) considers the inventory carrying cost and the cost of the external 

supply for Product j in each Macro-Period t, and also the setup cost for changing Product i to Product j in 

Micro-Period s. The sets of constraints cover demand satisfaction on (Eq. (11)). Capacity consideration takes 
place on (Eq. (12)), whereas the switching cost is considered on (Eq. (13)). The minimum lot-size is 
considered on (Eq. (14)) by the pattern from Phase One. The other constraints are the Non-Negativity 

constraint on variable Ijt,Wjt,xjs (Eq. (15) to Eq. (17)) and the Binary constraint on variable y
js
,z

ijs
 (Eq. (18) 

and Eq. (19)). 
 

4. Computational Test 
 
The formulation testing is divided into two parts, model validity and model solvability. The model validity 
testing uses a reduced size of problem and the model solvability is tested on various scenarios in a larger size 
of problem. All tests are performed on an IBM compatible PC with Intel i7 3770 processor, which has 4 
cores, 8 threads and 16GB RAM as hardware. The software used in this test is IBM ILOG CPLEX 64 bit 
version 12.4 with IBM ILOG Concert technology interface with Microsoft Visual Studio C#.NET 2012 
using .NET Framework 4.0. 
 
4.1. Model Validity 
 
The testing of model validity performed on a reduced size of problem to prove that the GLSP -TE can 
provide the optimality up to GLSP by reducing the commodity to just three commodities, three Macro-
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Periods with a total of nine Micro-Periods. The test found that GLSP -TE can perform the same result of 
the objective value. 
 
4.2. Solvability 
 
4.2.1. Test scenarios 
 

The proposed formulation was tested by 8 scenarios with adjusting 𝐾𝑠 
∗ parameters to 22 values to evaluate 

the formulation. In this paper, the 𝐾𝑠 
∗ will be tested as a set of data from min-lot to more than two times of 

the min-lot itself. The scenario lists are shown in Table 1. 
 
Table 1.  Scenario list. 
 

Scenario 
Code 

Demand 
Continuity 

Product Variety Demand 
Fluctuation 

Min-Lot 
Violation 

Total Demand 
Level 

SCN1 Continuous No Low No Under Capacity 

SCN2 Disjointed Missing middle demand/ 
Skipped period 

Low No Under Capacity 

SCN3 Disjointed One commodity in 
almost period 

Low No Under Capacity 

SCN4 Interval Demand 
commodity 

All commodity in some 
period 

Moderate No Under Capacity 

SCN5 Continuous No High No Possible to over 
capacity 

SCN6 Continuous No Moderate No Possible to over 
capacity 

SCN7 Continuous No High Yes Possible to over 
capacity 

SCN8 Continuous No Very High Yes Possible to over 
capacity 

 
In each scenario, the computation performed three solution gaps (5%, 10%, and 20%) to determine the 

computation time and solvability of the model. The timeout was set to 120 minutes to determine the 
applicability of the model in practice. 
 
4.2.2. Computation results 
 
The overall results in all solution gaps can be divided into 2 categories. First, the solution that can be found 
within the solution gap at 86% of all runs. Second, the solution that cannot be found within the solution gap 
in the defined amount of time but a feasible solution was made at 14% of all runs. From all tested scenarios, 
100%, 91.48%, and 66.48% of optimal solutions are obtained in the solution gaps of 20%, 10%, and 5%, 
respectively. The feasible solution with an average gap of about 8.8% is provided in all test runs, implying 
that the formulation performs a tighter bound.  

The calculation results from all scenarios show that the distribution of computational time is related to 
the solution gaps. With the wide gap (20%), the model can be solved fastest; whereas, for the middle gap 
(10%) all the tests can be solved within 30 minutes. The smallest gap (5%) shows various computational time, 
where some tests reached the timeout that is defined in the parameters.  

The distribution of iteration numbers is shown in Fig 4. The computational time and the number of 
iterations on the tests depend on the solutions gap tends to be in enormous number with much more 
iterations, which means that the solver did huge a number of iterations trying to close the gap but could not 
find the better solution within the defined timeout. In SCN7 and SCN8 the computational time and the 
number of iterations appeared in small numbers and fewer runs in the indicated timeout. For SCN1, SCN2 
and SCN3 the number of iterations were spread higher than the first group with more runs marked in the 
defined timeout as well. The SCN4, SCN5 and SCN6 is the group that the number of iterations are closed to 
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SCN7 and SCN8 but the computational time spread up to the defined timeout, which means that the solver 
tried to close the solution gap but could not find the solution within the gap.  
 

 

 
 
Fig. 4. Computational time and number of iterations for all scenario runs. 
 

The test results are ranked into 3 groups according to the value of the third quantile, the value of the first 
quantile and the median, which can be categorized into the best result, the good result and the moderate 
result.  
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The best result is performed on SCN7 and SCN8, with high and very high demand fluctuation and Min-
lot violation. Phase One performs the best computational time to reach the gap with a tighter bound, from 
the pre-defined production volume in each Micro-period, as shown in Fig. 5, Fig. 6, and Fig. 7. 

The good result is performed on SCN1, SCN2 and SCN3. The median value and first quantile of the 
good result is lower than the third group as shown in Fig. 5, Fig. 6, and Fig. 7. The characteristics of this 
groups is the low demand fluctuation with some skipped demand spreading in all period (SCN2 and SCN3)  

The moderate result is shown in SCN4, SCN5, and SCN6. The missing demand is an interval for all 
commodities in the same period. SCN4 shows a moderate demand fluctuation whereas SCN 5 and SCN6 
show continuous demand with high and moderate demand fluctuation. Phase One requires a long 
computational time for both the median and third quantile, as shown in Fig. 5, Fig. 6, and Fig. 7. 
 

 
 
Fig. 5. Computational time on each scenario using 5% solution gap. 

 

 
 
Fig. 6. Computational time on each scenario using 10% solution gap. 
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Fig. 7. Computational time on each scenario using 20% solution gap. 
 

The stress test of GLSP-TE is performed on scenarios that performed the best and worst scenarios from 
previous tests, the sixth scenario (SCN6) and the eighth scenario (SCN8). The tests are performed in 2 sets, 
first, a scaling product from 4 products to 30 products, and second, a scaling number of a micro-period from 
4 to 24 micro-period in each macro-period in scenarios that have 4 products. Both sets used a 2 hours timeout 

computation and 5% solution gap compared with GLSP with the same parameters except Ks 
* in GLSP-TE 

that will try 10 parameters and use the best results to compare with GLSP. The first set shows that all tests 
on GLSP were timeout with a solution gap of more than 99%. The GLSP-TE can perform optimality within 
the solution gap for most runs for SCN6 and all runs for SCN8, as shown in Fig. 8 and Fig. 9. The second 
set shows that the GLSP perform optimality with the solution gap in a scenario that has a binary variable of 
less than 10,000 variables. In SCN8 for scenarios that have more binary variables the optimizer report timed 
out with a feasible solution and did not achieve defined solution gap. In SCN6 the solver could not find an 
optimal solution since the number of the product was 4, but the GLSP-TE could perform all runs in the 
optimal stage, as shown in Fig. 10 and Fig. 11. The result showed that GLSP-TE has a tighter bound than 
GLSP from dividing the formulation into 2 phases. 

 

 
 
Fig. 8. Result Gap Comparison between GLSP and GLSP-TE on SCN6. 

 

0

0.5

1

1.5

2

2.5

SCN1 SCN2 SCN3 SCN4 SCN5 SCN6 SCN7 SCN8

C
o

m
p

u
ta

ti
o

n
al

 t
im

e 
(H

r.
)

Scenario

Computational time on 20% Solution gap

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

0%

20%

40%

60%

80%

100%

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Product

N
u
m

b
er

 o
f 

B
in

ar
y 

V
ar

ia
b

le

R
es

u
lt

 G
ap

Result Gap Comparison between GLSP and GLSP-TE #SCN6

GLSP SCN6 GLSP-TE SCN6 Number of Binary Variable



DOI:10.4186/ej.2018.22.1.93 

104 ENGINEERING JOURNAL Volume 22 Issue 1, ISSN 0125-8281 (http://www.engj.org/) 

 
 
Fig. 9. Result Gap Comparison between GLSP and GLSP-TE on SCN8. 
 
 

 
 
Fig. 10. Result Gap Comparison between GLSP and GLSP-TE on SCN6. 
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Fig. 11. Result Gap Comparison between GLSP and GLSP-TE on SCN8. 
 
4.3. Model Result 
 
The improvement GLSP -TE has been tested by running the optimization with the same scenarios at 5% of 
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One was tested by sampling the 𝐾𝑠 
∗ parameters into 22 values and using the average of the objective function 

value of Phase Two in each scenario compared with the objective function value of the GLSP. Most of the 
runs using GLSP do not reach optimality within defined time but a feasible solution can be obtained, except 
for SCN5, which reached an optimal solution within the 5% gap. In addition, only SCN6 did not have an 
improvement of the objective function value. The objective value of SCN1, SCN2, SCN3, SCN4, SCN5, 
SCN7, and SCN8 from the tighter bound of the GLSP -TE were improved to 40%, 36%, 43%, 15%, 5%, 
69%, and 72%, respectively, as shown in Fig. 12. 

 

 
 
Fig. 12. Percentage of Proposed formulation objective improvement. 
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5. Discussion 
 
The GLSP -TE is based on separating the most fractional part into Phase One, the pattern generation, which 
comes with a pre-defined lot-size for each commodity to perform an approximate optimization in calculating 
the production pattern. Depending on the number of the pre-defined lot-size, the results of the pattern 
generation might remove some feasible solution, causing the infeasible solution in the following step. From 
the reasons stated, the testing of the formulation is performed with multiple pre-defined lot-sizes in each 
scenario and gap, to ensure that the result will reach a feasible solution. All the results show at least feasible 
solutions without any single infeasible solution.  The setup pattern from Phase One is passed to Phase Two, 
to calculate the final production volume with consideration for demand, the inventory carrying cost, and 
capacity to formulate the solution.  

The quality of the result has been tested by reducing the problem size due to the limitation of running 
by GLSP.  The result in the reduced problem returns the same optimality for both formulations. In the large 
size problem, Phase One and Phase Two perform less computational times with a better objective function 
value compared with GLSP in most tested scenarios. 

From all tests performed, it can be concluded that the GLSP-TE provides optimality level with 
appropriate computational time. The future aspect of this formulation can be continued on the pre-defined 
lot-size calculation that can be improved for the precision and avoiding the infeasible effect in the next phase. 
Moreover, the gap in the multiple production line has to be considered for further studies. 
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