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Abstract. This paper presents the method to visualize a set of feasible loading points, 

called “feasible region”, in the two-dimensional power flow solution space. The 

visualization can be done by tracing the boundary of feasible region. The boundary 

points are determined by optimizing the reduced cost function with operational 

constraints. The method can also determine several kinds of feasible regions by 

assigning the appropriate free variables and its criteria. These feasible regions show the 

robustness of operating points and the limit of control actions. The test systems 

illustrate the boundary tracing and impacts of system parameters on the shape of 

feasible region, i.e. the capacitor bank operation, load shedding, generator voltage 

controls, and load level. 
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1. Introduction 
 

At present, an increase in load demand makes the power system operation more complicated. Under the 

heavy load condition, the power system operates closer to system limits. For maintaining the power 

system security, the continuation power flow method (CPF) is a tool which is widely used for 

monitoring the load margin [1], [2]. The obtained load margin is limited by a critical point where the 

power flow Jacobian matrix is singular. In addition to this method, other methods used for determining 

the critical point are based on the condition of eigenvector corresponding to the zero eigenvalue of 

Jacobian matrix [3], [4]. The optimization-based method [5], [6] also meets this condition through the 

Kuhn-Tucker optimal condition. The operating load points greater than the critical point are not 

possible to operate because the power flow solution does not exist. 

In an operational region viewpoint, a critical point is a singular point of the power flow Jacobian 

matrix located on the boundary of solvable region. Many works in literature have used the knowledge 

of the solvable region for security assessment. The concept of solvable region provides the method to 

obtain the smallest unsolvable degree and bring the operating point back to the solvable region by the 

control actions [7]-[11]. In addition, the solvable region can be visualized by the predictor-corrector 

process with two different ways to determine the boundary points. The continuation method in [12] 

determines a boundary point by solving nonlinear equations and then traces a boundary curve with the 

concept of free parameter assignment. The optimization-based method in [13] obtains each boundary 

point by minimizing the distance from an unsolvable point to the boundary. However, the solvable 

region visualization may not be enough for the operation because the system condition must be within 

several parameter limits, e.g. the voltage limits, the generator limits, and the transmission line limits, etc. 

These limits always bound the operational region to be smaller than the solvable region. It is called the 

feasible region which is a set of operating points where no operational limit violations are observed. 

This paper considers extensive operational limits into the problem and proposes the method to 

visualize the feasible region on the P-Q plane of load bus. The feasible region is traced by the 

optimization approach consisting of the reduced cost function related to the considered load bus and the 

operational constraints. Moreover, this paper expresses several cases of visualization based on 

parameter manipulation. The various kinds of feasible region can be determined by the different 

assignments of free parameters. The outermost regions affected by system parameters are defined. 

These regions show the robustness of loading points when the considered parameters are free to vary. 

The rest of the paper is organized as follows: section 2 reviews the concept of power flow solvable 

region and the method to obtain the solvable boundary; section 3 proposes the variable assignments and 

the tracing algorithm to visualize several types of feasible region; in section 4, the numerical examples 

are discussed. 

 

2. Power Flow Solvable Region 
 

2.1. Power Flow Problem 
 

The power flow equation is a fundamental problem for power system engineers. The problem consists 

of: to determine voltage at each bus and to calculate power flows in each transmission line. In power 

flow problem, the variables are real powers (P), reactive powers (Q), voltage magnitudes (V), and 

voltage phase angles (δ). The fixed variables are different depending on the bus type. The power flow 

problem is a system of nonlinear equations expressed as 

 
          ( )   0f x S ,                                                    (1) 

  

where S is a vector of real and reactive power injections, which are known variables  

 

       [   ]T

pv pq pqS P P Q .                                                              (2) 

 

And then x is a vector of unknown variables expressed as 
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[   ]T

pv pq pqx V  .                                     (3) 

 

The nonlinear function f consists of the real and reactive power functions (fP and fQ), which can be 

presented as 

 

 ( ) [ ( )  ( )  ( )]T

Ppv Ppq Qpqf x f x f x f x .                                              (4) 

 

The subscript “pv” and “pq” are the associated variables of generator bus and load bus, respectively. In 

the power flow problem, N defined as a number of equations equals to npv+2npq where npv and npq are 

a number of generators and load buses consecutively. The power flow problem has N unknowns and N 

equations. The solution of power flow problem is a point that can be solved by the Newton-Raphson 

method. 

 

2.2. Continuation Power Flow 
 

The continuation power flow (CPF) is a tool for tracing the curve of power flow solutions. The obtained 

curve presents the margin from an existing loading point to the critical point where the power system 

reaches an unstable condition. The critical load point is called the saddle-node-bifurcation point (SNB). 

In the problem, the load parameter (λ) is added to the power flow problem as an unknown variable. An 

increment of parameter λ corresponds to an increment of load in the specified proportion of real and 

reactive power. The power flow equation with the load parameter is 

 

( ) ( ) ( , )    0f x S g x .                                                     (5) 

 

The number of unknowns is N+1 because of the additional variable λ, while the number of equations is 

N, the solution is a curve, consequently. The way to quantify this curve is to use the predictor-corrector 

continuation process [1], [2]. 

From the operating point, the CPF method finds the SNB point on a fixed direction of load 

increment. However, the different load directions produce different SNB points. A set of SNB points is 

the boundary of the solvable region, as shown in Fig. 1. 
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Fig. 1. Solvable boundary and CPF curves. 

 

2.3. Tracing Boundary of Solvable Region: Continuation Method 
 
The SNB point is both the power flow solution and the singular point of Jacobian matrix. The 

conditions of singular point are the following: 
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                                       ( , )  0xg x y                                                (6) 

                                                              1T y y                                                                                             (7) 

 

where gx refers to the Jacobian matrix / g x  of (5), Ny is the right eigenvector corresponding to 

the zero eigenvalue of gx, and p  is a vector of load parameters with p designated as the number of 

load parameters. The SNB point is the point that satisfies the system of nonlinear equations (5)-(7), 

which is  

 

                                 ( )

1T

 
 

 
 
  

0x

g

h z g y

y y

,                                                 (8) 

 

where   2  
T N p z x y   and 2 2 1( ) : N p N h z . 

In this formulation, when p=1, the number of equations is 2N+1 and the number of variables is 

2N+1. The solution is a SNB point that can be determined without creating the CPF curve.  

For the solvable region visualization on the P-Q plane, the free parameters are the real and reactive 

power, this implies that p=2. Hence, the problem becomes 2N+2 variables with 2N+1 equations, the 

solution is a curve that can be traced by the continuation method. As shown in Fig. 2, the method in [12] 

applies the predictor-corrector process to trace the boundary curve. The predictor point is determined by 

moving the existing SNB point zn along the tangent vector v with the step size τ. The tangent vector v 

can be obtained by: 

 

                                       | 0
n Z Z Zh v ,                                      (9) 

                                                           1v ,                                                 (10) 

 

where hZ is the Jacobian matrix of (8). In the correction step, the next boundary point must satisfy (8) 

and the following equation: 

 

                                             1  ( ) 0T

n n    z z v .                                (11) 

 

 

Solvable Boundary
 nz

v n vz

1nz

 
Fig. 2.  Solvable boundary tracing by continuation method. 

 

2.4. Tracing Boundary of Solvable Region: Optimization-Based Method 
 

Let S
*
 be a vector of unsolvable power injections. For tracing the solvable region in [13], the 

minimization problem replaces the correction step as the following: 

 

                             * *

,

1
min  ( ) ( )

2

T 
S x

S S S S ,                                    (12) 

                                 s.t.    ( )    0f x S ,                                                                           (13) 

 

where    
  

1 1   ...    ... 
T T

n nP P Q Q S P Q is a vector of power injections. The objective function is the 

cost function [9] and the equality constraint is the power flow equation. Therefore, the meaning of this 
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problem is to find the nearest solution point from the unsolvable point S
*
. According to the Kuhn-

Tucker necessary condition, the solution to this problem is the singular point of the power flow 

Jacobian matrix [7]. At this point, the left eigenvector corresponding to the zero eigenvalue is a 

perpendicular vector of the solvable boundary. This vector is parallel to *( )S S . The tangent vector v 

for the predictor step can be obtained from 

 

                                                    *( ) 0T S S v .                                                                (14) 

 

The solution obtained by (12), (13) is not a boundary point when S*
 is inside the region. As the solvable 

region is not always convex [14], [15], the modified predictor step determine the next S
*
 by using the 

existing S
*
, as shown in Fig. 3. 
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Fig. 3.  Solvable boundary tracing by hybrid method. 

 

3. Tracing Boundary of Feasible Region: Proposed Method 
 

3.1. Feasible Region 
 

2

1

Feasible Region

Infeasible Region

Unsolvable Region

 
 

Fig. 4.  Sets of operating points. 

 

Figure 4 shows three regions of operating points bounded by the solvable boundary (
1 ) and the 

feasible boundary (
2 ). The unsolvable region is a set of operating points where the power flow 

equation has no solution. The infeasible region is a set of solvable operating points, but these points 

violate at least one operational limit. Finally, the feasible region is a set of solvable operating points 

where all system parameters are within their limits. This region is normally desirable for the operation. 

With the system condition consisting of the current load level and generator voltage schedule, the 

feasible boundary is traceable on the P-Q plane of considered bus. 

 

3.2. Optimization Problem Formulation 
 

The optimization-based method is available for including the operational constraints into the problem. 

In order to determine the feasible boundary point, the unknown variables for this problem are: 
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 Power flow variables : 

 

                                     [   ]T N

pv pq pq x V                                                       (15) 

 

 Free variables: 

 

                                             2

 g  g c[    Q ]T ng

f cP  S P Q                                                         (16) 

 

The subscript “g” denotes the participant generator bus supplying the real and reactive power to the 

considered bus denoted by the subscript “c”. The number “ng” is a number of participant generator 

buses. 

In this case, we consider only one load bus and try to plot the contour of feasible region within two-

dimensional space between Pc and Qc. Therefore, power injections on other load buses are not taken 

into account. The objective function is the reduced cost function as the following: 

 

                                     * 2 * 21
( ) ( )

2
c c c cP P Q Q                                                              (17) 

 

The objective function is one half square of power mismatch that represents the distance between the 

infeasible point ( *

cP , *

cQ ) and the boundary point (Pc, Qc) by considering only the components of the 

considered bus. It is also useful for tracing the outermost feasible region influenced by the load 

variation. The details describing this are introduced later. 

The solutions have to satisfy power flow equations and all equipments have to operate within their 

limits. Thus, the constraints of this problem consist of: 

 The power flow equality constraint: 

 

                                             ( , )  f  0g x S .                                                                    (18) 

 

 The load bus voltage limit: 

 

                                      min max

pq pq pq V V V .                                                      (19) 

 

 The generator limit: 

 

                                       min max

g g g P P P ,                                                                  (20) 

                                      min max

gg g Q Q Q .                                                                   (21) 

 

 The transmission line limit: 

 

                                        ( , )f TT x S S ,                                       (22) 

 

where 2( , ) : N ng m

f

  T x S is a function of the transmission line flows, m

T S  is a vector of the 

transmission line limits, and m is a number of transmission lines. 

 

 In the calculation, the real power injection of load bus is  negative, that is: 

 

                                                        0cP  .                                                                          (23) 

 

For the particular load point * *

c cP jQ , the minimization problem with the reduced cost function 

subjected to the operational constraints returns the zero value when this load point is feasible. 
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Oppositely it returns the positive value when this load point is unfeasible, and the obtained solution is 

the nearest feasible point. 

 

3.3. Tracing Algorithm 
 

The algorithm for tracing the feasible region on the P-Q plane is described through the following steps: 

1) Let *( ) *( ) *( )

 

i i i

c c cS P jQ   be an infeasible load point. Select the load resulting in the violation as the 

first infeasible load point; 

2) Obtain the boundary point ( ) ( ) ( )

 

i i i

c c cS P jQ   by minimizing the objective function (17) subjected to 

constraints (18)-(23); 

3) Obtain the direction ( )iw by 

 

                         ( ) ( ) *( ) ( ) *( )( ) ( )i i i i i

c c c cw P P j Q Q    ;                      (24) 

 

4) Determine the direction *( )

 

i

cS  by normalizing ( )iw  and then rotating  90 degrees counterclockwise 

by multiplying an imaginary unit  j as the following, 

 

                                         *( ) ( ) ( )

 /i i i

cS jw w  ;                                                          (25) 

 

5) Find the next infeasible point *( 1)

 

i

cS   by a direction of *( )

 

i

cS  and a step size l as shown: 

 

                                                  *( 1) *( ) *( )

   

i i i

c c cS S l S    ;                                                          (26) 

 

6) Repeat steps 2-5 to trace the boundary of feasible region until obtain the complete contour of 

feasible region. 

Because of the operational constraints, the feasible boundary may not be smooth at the point where two 

parts of different active constraints merge together. This tracing method repeatedly returns the same 

boundary point, the new S*
 changes positions around this boundary point until getting a new boundary 

point, as shown in Fig. 5.  
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( 2)i
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*( )i

cl S

 
 

Fig. 5.  Feasible boundary tracing. 

 

3.4. Change of Feasible Region 
 

The feasible boundary on the P-Q plane restricts the available area for the operating load. The varied 

load on the considered bus causes the operating point to move over inside its feasible region. 

Nevertheless, the shape of the feasible boundary is changeable by the parameters of other buses, e.g. the 

load variation, the capacitor bank operation, load shedding and generator voltage rescheduling. 

When an undesirable situation occurs due to a heavy load, the operating point is possibly away 

from the feasible region. Hence, the system operator must bring the operating point back to the feasible 

region.  
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Fig. 6.  Feasible region and operating point affected by control actions. 

 

Figure 6 illustrates the effect of control actions on the P-Q plane. The control actions are capable of 

two ways, i.e. by driving the operating load back into the feasible region or by enlarging the feasible 

region [11]. The control actions studied in this article are the reactive power compensation and the load 

shedding. 

As for the load bus, the installed capacitor banks can supply the reactive power and then bring the 

operating point back into the feasible region. If capacitor banks on that bus are not available, the 

capacitor banks operation on other buses can return the feasibility by reshaping the region. Furthermore, 

the load shedding is another control action to recover the undesirable situation. It can drive the 

operating point at that bus back to zero, and also reshape the feasible boundary on other buses because 

the load level in the system is reduced.  

 

3.5. Feasible Region by Freeing Generator Voltages 
 

The generator voltage setting is important for the power system operation. The tracing method in 

previous section determines the feasible region by setting generator voltages as constants. However, the 

generator voltages influence the shape of feasible region. Therefore, defining the generator voltages as 

unknowns is able to trace another type of feasible region. In this case, the vector of unknown variables 

in (15) is replaced by 

 

                                g[    ]T

pv pq pqx V V  .                 (27) 

 

The additional constraints for the optimization problem are the operational criteria of generator voltages 

(Vg), which is 

 

                                        min max

g g  g V V V   .                          (28) 

 

By minimizing the objective function (17) with the constraints (18)-(23) and (28) in the tracing process, 

the obtained region is the possibility of load by varying the generator voltages.  

 

3.6. Outermost Boundary by Load Variation 
 

Not only the generator voltage setting affects the feasible load region, the shape of boundary also 

depends on all power injections in the system. The outermost boundary point by the load variation can 

be determined by: 

 As in the previous section, define the generator voltages as unknowns and bound it by the 

appropriate constraint. 

 Define all bus injections as unknowns, the vector of free variables in (16) is replaced by the real 

and reactive power at all buses, which is 
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  [   ]T

f S P Q .              (29) 

 

 For the load buses, the real power injections are normally negative by using the following 

constraints: 

 

                                                    pq  0P ,             (30) 

 

 Minimize the objective function (17) subject to (18)-(22), (28), and (30) 

The optimization problem utilizes (17) to determine the outermost boundary of the considered bus. 

Although all loads in the system are free variables, the optimization problem can be solved to obtain the 

outermost boundary point of the considered bus because the target is to minimize the distance of 

apparent power only on that bus. The obtained boundary shows the potential of the system for 

supplying power to the considered bus. 

 

4. Numerical Examples 
 
This section visualizes the load feasible region by using the proposed method with the six-bus system 

[16] in Fig. 7, the system data are in Table 1-2. The criteria of generator voltages are assumed to be 

0.95-1.05 pu for bus 1-2 and 0.97-1.07 for bus 3. The operation criterion of load bus voltage is 0.95-

1.05 pu and the reactive power limit is  1.0 pu for every generator with 100 MVA base. 

 

Table 1. Bus data. 
 

Bus Bus 

type 

Voltage 

(pu) 

P 

(pu) 

Q 

(pu) 

Pgen 

min 

(pu) 

Pgen 

max 

(pu) 

Qgen 

min 

(pu) 

Qgen 

max 

(pu) 

Voltage 

limit (pu) 

1 Swing 1.05 - - 0.50 2.0 -1.0 1.0 0.95-1.05 

2 Gen 1.05 0.5 - 0.375 1.5 -1.0 1.0 0.95-1.05 

3 Gen 1.07 0.6 - 0.45 1.8 -1.0 1.0 0.97-1.07 

4 Load - -0.7 -0.7 - - - - 0.95-1.05 

5 Load - -0.7 -0.7 - - - - 0.95-1.05 

6 Load - -0.7 -0.7 - - - - 0.95-1.05 

 

Table 2. Transmission line data. 

 

From 

bus 

To   

bus 

Resistance 

(pu) 

Reactance 

(pu) 

Line charging 

susceptance 

(pu) 

Line limit 

(pu) 

1 2 0.10 0.20 0.020 0.4 

1 4 0.05 0.20 0.020 0.6 

1 5 0.08 0.30 0.030 0.4 

2 3 0.05 0.25 0.030 0.4 

2 4 0.05 0.10 0.010 0.6 

2 5 0.10 0.30 0.020 0.3 

2 6 0.07 0.20 0.025 0.9 

3 5 0.12 0.26 0.025 0.7 

3 6 0.02 0.10 0.010 0.8 

4 5 0.20 0.40 0.040 0.2 

5 6 0.10 0.30 0.030 0.4 
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Fig. 7. Six-bus test system. 

 

4.1. Base Case Boundary Tracing 
 
As a considered bus, bus 6 receives the power from all generators in the system. In this simulation, the 

first infeasible point *(1)

6S  is equal to -j1.2 pu and the step size is 0.1 pu. The result in Fig. 8 shows the 

obtained boundary points of bus 6 and the infeasible points used for the tracing method. In the same 

way, the simulation also traces the feasible boundary of buses 4 and 5, as a result in Fig. 9. We observe 

that: 

 Bus 5 has the greatest load margin in the direction of load increment with the same power 

factor. 

 For bus 6, the point (0, 0) is outside the feasible boundary, the load shedding on bus 6 is 

therefore unavailable. 

 Bus 4 has the greatest margin for the reactive power compensation. 

The obtained region is bounded by all operational limits. The boundary points are not necessary to 

be the singular points. Hence, this boundary is different from the solvable boundary. The result in Fig. 

10 shows the load region of bus 6, the solvable region is much larger than the feasible region. 
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Fig. 8.  Feasible boundary tracing on bus 6. 
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Fig. 9.  Feasible regions of three load buses. 
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Fig. 10.  Feasible boundary and solvable boundary. 

 
 
4.2. Effect of Reactive Power Compensation 
 

The capacitor banks are assumed to force the operating point to be 0 MVAr for buses 4 and 5, 

alternately. This operation affects the feasible region of bus 6, as shown in Fig. 11, the lower part of the 

feasible region shifts down and the operation of bus 5 leads to the maximum load margin of bus 6. 
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Fig. 11.  Feasible boundary change by reactive power compensation. 

 

4.3. Effect of Load Shedding 
 

Figure 12 compares the feasible regions of bus 6 in the case of: the base load, the load shedding at bus 4, 

and the load shedding at bus 5, respectively. The obtained result shows that the load shedding can 

improve the load margin, but the obtained region is smaller than that of the base case. Especially for the 

load shedding of bus 5, the upper part of the region significantly decreases. This implies that the 

operation of capacitor banks at this condition will bring about an unfeasible situation. Furthermore, the 

right part of the region also decreases because of the minimal limit of generators. The operating load of 

bus 6 can not be less than 60 MW, approximately. 
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Fig. 12.  Feasible boundary change by load shedding. 
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4.4. Effect of Generator Voltages 
 

To study the effect of generator voltage setting, we define the generator voltages as free variables and 

then assign the constraint (28) to the optimization problem. The obtained boundary is the possibility of 

loading points under the control criteria of generator voltages. Figure 13 shows the feasible region with 

free generator voltages and then compares to the base case. 
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Fig. 13.  Feasible region when generator voltages are free to vary and feasible region of base case.  

 

4.5. Effect of Load Level 
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Fig. 14.  Feasible boundary of bus6 change by load level. 

 

Assume that: 

 The heavy load is 83 MW and 83 MVAr for all load buses. 

 The light load is 57 MW and 57 MVAr for all load buses. 
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Figure 14 illustrates the feasible boundaries from various load levels comparing with the outermost 

boundary (variable load) obtained by the method in section 3.6. The region is large in the case of light 

load and small in the case of heavy load. However, we can observe that the region in the case of light 

load is cut by the minimum limit of generator, i.e. the load lower than approximately 12 MW is not 

feasible. Furthermore, the outermost boundary covers all three feasible regions. It displays the potential 

of the system to supply load at bus 6. 

 

4.6. Larger Test System 
 
In this section, the IEEE-24 bus test system [17] is the larger system chosen to illustrate the robustness 

of the proposed algorithm. The considered buses are bus 18, bus 15 and bus 13, which have the top 

three largest loads in this system.  The load feasible regions are determined by the proposed method, as 

shown in Fig. 15. 
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Fig. 15.  Load feasible regions evaluated from IEEE-24 bus system. 

 

5. Conclusion 
 

The boundary of feasible region is important for determining the robustness of operating points. The 

feasible region is the set of power flow solutions without any operational violation. This paper proposes 

the method for tracing the feasible boundary of the considered load bus. The optimization-based method 

is able to solve the feasible boundary point by assigning free variables and the operational limits. The 

modified predictor-corrector process can trace the feasible boundary and obtain the complete contour of 

feasible boundary in the two-dimensional space. 

In numerical examples, the results demonstrate that the feasible region visualization enhances the 

security monitoring. With the considered operating load, the region shows the load margins in many 

directions including the limitation of control actions, e.g. the available reactive power compensated by 

capacitor banks and the available load shedding. Moreover, the different assignment of free variables 

enables the method to find the several types of feasible region. The proposed method is also able to 

trace the feasible boundary when generator voltages are free, in order to observe the robustness of 

loading points. Furthermore, when we define the loads of other buses as free variables, the obtained 

result is the outermost boundary that shows the potential of the system to supply the considered bus. 
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