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Abstract. Buffer-overflow attacks began two decades ago and persist today.  Over 

that time, a number of researchers have proposed many solutions. Their targets were 

either to prevent or to protect against buffer-overflow attacks. As defenses improved, 

attacks adapted and became more complicated. Given the maturity of field and the fact 

that some solutions now exist that can prevent most buffer-overflow attacks, it is time 

to examine these schemes and their critical issues. In this survey, approaches were 

categorized into three board categories to provide a basis for understanding buffer-

overflow protection schemes. 
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1. Introduction 
 

Though dated back to the 1988 infamous MORRIS worm [1], buffer-overflow attacks are still widely 

found. In 2007, buffer overflows made up the majority of the vulnerabilities listed by CERT [2] which 

allowed execution of arbitrary code, i.e. the most serious vulnerabilities. Though skilled programmers 

should write code that does not allow buffer overflows, current practice does not guarantee programs 

that are free from vulnerabilities. This way, no software is completely safe from buffer-overflow attacks. 

Given the persistence of the attacks, eliminating is considered to be difficulty if not impossible. As 

operating systems managed to get rid of buffer overflow, applications still suffered from being 

exploited.  Running an application with root or administrator privileges also give devastated impact. 

Rather than relying on individual skill, a variety of methods to protect systems from buffer-

overflow attacks have been proposed. Nonetheless, a protection is not completely provided by most of 

them. As protection has improved, attacks have adapted, so an “arms race” developed. For example, the 

original stack-smashing attack can easily be detected by early protection schemes, but more recent 

attacks that focus on the heap instead of the stack are being ignored. 

Our aim is to develop a basic understanding of buffer-overflow and buffer-overflow attacks, to 

outline and categorize techniques that have been developed, and to analyze critical issues related to 

each method. We begin with an overview of buffer-overflow attacks to provide the reader with a 

rudimentary understanding of the attacks and basic protection mechanisms.  Next, we provide a more 

in-depth look at buffer overflows to provide a foundation for the analysis. Finally, we classify the 

protection schemes and identify critical issues. 

 

2. Overview 
 

2.1. Basic Example 
 

A buffer overflow (a.k.a. buffer overrun) happens when data written to a buffer overflows into memory 

adjacent to the allocated buffer.  Taking advantage of the corruption of the adjacent memory is the basis 

of an attack. 

To illustrate a basic overflow, consider the following example of a 6-byte long string buffer X 

followed by a 4-byte long integer Y.  Initially, the string A contains only „-‟ characters and the integer B 

contains the number 9. 

 

X X X X X X Y Y Y Y 

- - - - - - 0 0 0 9 

 

If a program stuffs too big a word into buffer X, the result is an overflow into Y.  For example, 

store the string “attackers” into X. (Assume that the string is terminated with a null byte: „\0‟.) 

 

X X X X X X X X Y Y 

a t t a c k e r s \0 

 

Although the programmer only modified X, the result was that Y was modified, too.  The modified 

bits of Y will represent some integer other than 5.  If B is a return address, a function will return to a 

different place than originally intended. 

If some mechanism exists that prevents the overflowing of X into Y, an attack will fail.  For 

example, if a bounds checking mechanism exists that identifies that the string “attackers” is too big to 

fit in X and stops the operation, a buffer-overflow will be avoided and this attack will fail. 

The goal of an attacker is to tailor the modification of Y so that it can take the program someplace 

to compromise system security (assuming that Y is an address such as a return address).  The defender 

can either stop the overflow of X in the first place or detect the maliciously modified of Y later. 

The crucial concept of buffer-overflow attack is to modify a control address such as our return 

address Y.  By modifying a control address, an attacker can cause the program to go where the attacker 

wants rather than where the programmer intended it to go. 
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Here is a piece of C-code that takes input from the command line through the variable “argv” and 

writes it into a buffer using the strcpy function (string copy) without any bounds checking.  If crafted 

carefully, the input string can overwrite a return address by overflowing the buffer on the system stack 

and modify the location to which the program returns.  If a program is executed as a privileged user and 

the modified address is a shell address, the attacker now has opened a shell in privileged mode and 

“owns” the computer.  (Note: in practice this piece of code cannot satisfy all those conditions so it is not 

a complete and fully effective piece of attack code.) 

 
/* Example of buffer overflow. */ 

 

#include <string.h> 

#include <stdio.h> 

 

 

int main(int argc, char *argv[]) 

{ 

  char myBuff[10]; 

  strcpy(myBuff, argv[1]); 

  return 0; 

} 

 

2.2. Sample of Prevention Techniques 
 

Here we provide a few samples of existing prevention techniques so the reader can get a sense of the 

field, especially with respect to techniques they may have heard about.  After this brief introduction we 

will present the full variety of techniques in full detail. 

In the basic example above, we made three points: 

 Bounds checking of buffer A can prevent a buffer overflow. 

 Recognizing that address B was modified and taking corrective action can prevent a 

buffer-overflow attack from succeeding. 

 The key concept is preventing the attacker from modifying the program‟s control data. 

The best solution is to write code without vulnerabilities.  The whole field of software engineering 

is premised on writing correct code.  In particular, provably correct code should eliminate buffer 

overflows (as well as most other errors).  However, currently these techniques are not widely applied, 

so vulnerable code persists.  In addition, the conditions under which code is run may change so that 

assumptions used for correctness can become invalid over time. 

Some languages such as Java bounds-check their buffers so they can prevent the overflow of 

buffers.  However, Java is not a panacea since the underlying run time system has been attacked with 

buffer overflows [3, 4]. Other languages offer the option of bounds checking, such as the C++ STL, but 

many programmers avoid that support because bounds checking everything can be inefficient and 

selective bounds checking is not used or not used correctly. 

It is possible to statically check a program to prevent the use of functions (such as strcpy in our 

example) that do not perform bounds checking.  However, substitutes (such as strncpy) are not always 

used correctly, resulting in programs without strcpy but with buffer overflows.  Compilers can enforce 

restrictions on specific function usage. 

Hardware modifications such as Intel‟s NX are now built into consumer processors.  The concept 

behind that hardware is to stop maliciously injected code from being executed on the system stack by 

marking the stack as non-executable (i.e. Non-eXecutable).  The stack has been a popular and easy 

place to put malicious code so the attacker will modify a return address (such as B in our example) to be 

the address of the malicious code on the stack.  If the stack is non-executable, such an attack will fail 

because the malicious code will not be able to execute.  This approach “raises the bar” for attackers 

rather than preventing attacks because attackers respond by using code somewhere other than the stack. 

The latest approaches have focused on recognizing that control data (addresses such as B in our 

example) have been modified and prevent jumps to modified addresses.  For example, a “canary” word 

can be placed next to a control word so that overflowing a buffer trashes the canary word as well as the 
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control word (the analogy is to a canary in a mine).  Compilers such as Microsoft‟s Visual Studio can 

add such protection.  Attackers have circumvented canary words, so this technique qualifies as “raising 

the bar.”   

Most recently, hardware modifications have been proposed that tag external data as “tainted” as it 

enters a process. If that “tainted” data somehow (say through a buffer overflow) is written into a control 

address, it is easy to recognize (because it is tagged) and an exception can be raised if the “tainted” 

address is being used as a program counter.  Hardware modifications have the advantage of being 

harder, possibly impossible, to circumvent. 

 

3. Fundamentals 
 

We begin by establishing the fundamentals of buffer-overflow vulnerabilities, discussing the associated 

attacks, and describing variations. Later, we provide a more precise definition of buffer overflows and 

their attacks and show the critical role of control data in attacks. We then show how the concept of 

preserving the integrity of control data, particularly with respect to external input, leads to the latest, 

and most effective, buffer-overflow prevention techniques.  

There exist attacks on variables (non-control data) achieved through overflowing of buffers, but 

these are not what most people think of as “buffer-overflow” attacks, since in most cases corrupting 

control data results in a more virulent attack.   A related attack overflows data values, usually integers.  

Most attacks that overflow data values are a prelude to another attack—usually buffer overflow—

because the data overflow attacks guard data.  Nonetheless, they are not covered here. 

 

3.1. Necessary Conditions 
 

Several researchers (e.g. [5, 6, 7, 8, 9, 10, etc.]) have posited that there are two necessary conditions for 

buffer-overflow attacks to be successful: (1) injecting malicious code and (2) redirecting the program 

control flow to execute that code. However, injecting malicious code is not necessary since the code 

utilized in the attack can be resident code found in shared libraries. For example, jumping to resident 

shell code while in privileged mode is sufficient for a successful attack. Therefore, we claim that only 

the second condition is truly necessary: redirection of control. 

 Techniques that only protect systems from the injection of malicious code will fail as general 

protection mechanisms. We will point out such schemes, but will focus on the issue of redirection of 

control. 

 

 

3.2. Buffer Overflow 
 

We begin with a definition of buffer overflow (from the Webopedia Computer Dictionary [11]). 

 

Definition 1: Buffer Overflow 

The condition wherein the data transferred to a buffer exceeds the storage capacity of the 

buffer and some of the data "overflows" into another buffer, one that the data was not intended 

to go into.  

Since buffers can only hold a specific amount of data, when that capacity has been reached 

the data has to flow somewhere else, typically into another buffer, which can corrupt data that is 

already contained in that buffer. [11] 

 

When necessary conditions are met, buffer-overflow attacks may result in a serious system security 

breach. The seriousness of attacks varies. It can be as simple as modifying a variable, accessing 

unauthorized memory (segmentation fault), or executing attackers‟ code. Based on the definition of 

buffer overflow, we define the buffer-overflow attacks in Definition 2. 
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Definition 2:  

A buffer-overflow attack on control data is an attack that (possibly implicitly) uses 

memory-manipulating operations to overflow a buffer, which results in the modification of an 

address to point to malicious or unexpected code.  [12] 

 

Though a buffer-overflow may occur with any location in memory, we use the term “buffer-

overflow attacks” to specifically refer to attacks on control data. 

 

Observation: Data passed from another domain (machine, process) is always used to overflow a 

buffer—hence its malicious nature. 

 

Initially, return address was a target, but later the targets also include other control data (e.g. 

function pointers, jump table).  Nevertheless, the eventual result will change the program to execute the 

injected malicious code. When buffer overflow is not being used as an instrument for modifying the 

address, other type of attack such as a race condition, a Trojan horse may give a similar result. 

With this observation, we summarize a buffer-overflow attack as 

an attack caused by overflowing a buffer with data from another domain that results in 

a malicious or unexpected behavior of a program. 

This notion is not originally new. For example, Howard and LeBlanc propose in their book that “All 

input is evil until proven otherwise” [13]. With this concept in mind, an ability to detect and validate 

input, especially input that is eventually used for control, would be an insightful solution against buffer-

overflow attacks. More concepts about prevention will be discussed later in section 4.  

Using the concept that inputs are the origin of attacks, a key component for detecting and validating 

the input is metadata. Metadata is additional information on the properties of data. It can be one or a 

combination of: type descriptor, guard value, encoding key, redundancy copy of data, tagged value, or 

even programming logic. This concept is also not new. Metadata has been discussed as an instrument 

for detecting and preventing buffer-overflow attacks [14]. We use the variety of metadata and its 

management as a way of classifying buffer-overflow prevention schemes. 

Note that metadata can also be used for other purposes, e.g. tagged architectures such as Symbolics 

[15] or tagged operating systems such as [16]. However, we only focus on the use of metadata for 

buffer-overflow attack prevention. 

In summary, a malformed input is being used to overflow a buffer causing a malicious or 

unexpected result, buffer-overflow attacks. To prevent the attack, some metadata is necessary. Before 

getting to the details of schemes for handling buffer-overflow attacks, we will delve further into details 

of attacks and their variations. 

 

3.3. Sample Attacks and Variations 
 

Control data and local variables are two main targets of buffer-overflow attacks. Control data is the 

target of majority of attacks, so is the focus of prevention schemes. There are several types of control 

data: function pointers, return addresses, and jump slots. Since the locations of return addresses are 

deterministic, they have been the primary target. Other control data is targeted by more advanced 

attacks. Attacks on return addresses are usually referred as first-generation attacks and those on others 

as second-generation attacks [17]. 

We begin with an algorithm for performing an attack: 

 
// Attack algorithm 

1. Find a vulnerable address. 
2. Find a buffer near a vulnerable address. 
3. Pass an argument to the buffer to cause it to overflow over the 

vulnerable address. 

4. Within the buffer craft the data so a new address overwrites the 
vulnerable address. 

5. Wait for a (privileged) function to jump to the new address. 
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Elias Levy (a.k.a. Aleph One) [18] provided the first step-by-step description of how to construct a 

buffer-overflow attack in 1996. In his paper, he coined the term “Stack Smashing” to refer to plastering 

malicious code and its address to set up an eventual overflow of a return address on the stack.  

Figure 1 (taken from Howard [19]) is an example of stack-smashing. In this example, attackers will 

pass a malicious code and copies of buffer‟s address as a parameter to the vulnerable program (through 

argument p). A strcpy function (buffer manipulation function) will overflow the return address of the 

function with the address of the buffer (containing shell code). The return instruction will use the 

address of the target buffer as a return address and eventually jump to execute that code. Function 

pointer fp, an additional attack vector, are presented but not used.  The modification of the return 

address (replaced by the address of the target buffer) is the critical component of this attack.  

To illustrate an advanced buffer-overflow attack, a variation of Hannibal Exploit [20], an example 

of multistage buffer-overflow attack that can bypass most software buffer-overflow solutions, is 

presented in Fig. 2. The fundamental of a multistage buffer-overflow attack is a vulnerable pointer that 

can be modified to refer to arbitrary memory (i.e. a buffer overflow near a nifty pointer). In the first step, 

the attackers modify a pointer (by overflowing) to point to a specific location (e.g. a function pointer or 

a jump slot). The second step is to store designated address at the target. That is, attackers can create 

arbitrary pointer (first stage) and modify a memory location with any address (second stage). Once 

modified, a latter jump using that target will run code specified by attackers. In particular, the program 

will be redirected to the attacker‟s malicious code.  For example, modifying the jump slot of a 

privileged program to target to shell code allows attackers to spawn a privileged root shell is an 

example of this scenario of attack.  

It is worth clarifying the usage of a jump table. Given that the printf binary is a part of standard 

shared library, a slot in the jump table is used as a pointer to the entry of printf in memory. A call to this 

function in users‟ program indexes the table for printf slot and then jumps to specify address.  

Attacking this vulnerable program requires two stages of buffer overflow. First is overflowing the 

ptr pointer to point to the printf slot (1) by specifying the address of this slot in jump table in argv[1] . 

The strcpy routine, by copying argv[1] into buffer, will replace ptr with the printf address slot. In the 

figure, the pointer ptr will be changed from „buffer‟ (arc labeled „Before‟) to the jump slot (arc labeled 

„After). Once the slot is reachable, attackers can simply alter the value.  

Supposedly an address of resident shell code, referred as residentcode, has been determined. Once 

attackers managed to overwrite a slot in the jump table with the address of residentcode, a subsequent 

call to printf would change to execute residentcode, the shell. Assuming that it is a privileged program 

with privileged mode; the attacker would have access to a function root shell.  (More details can be 

found in [21]).  This attack gets around most buffer-overflow protection schemes. Less obvious is 

modifying handling vector of some solutions to bypass the handling routine. This allows us to 

circumvent some software solutions.  

Additional attack that cannot be detected by most schemes is a pointer attack. For example we can 

copy from one memory location to another by modifying source and destination pointers, Fig. 3 shows 

an attack on both pointers. Attackers can use the first strcpy to overflow the src and des pointers with 

arbitrary address. In this case, src is replaced with the address of valid control data (e.g. function pointer 

of a shell code); and des is replaced with the address of target pointer (e.g. a slot in the jump table). 

With the next strcpy in place, attackers can replace the jump slot with a known local entry without 

being detected. A possible solution to this type of attack is to encode pointers. 

There exist printf vulnerabilities [12], malformed formatting instructions that result in modifying 

arbitrary memory similar to buffer overflow. However, such attack is not a buffer-overflow attack. 

Some buffer-overflow protection schemes are useful for this class of attack as well. However, such 

attack may occur to any variable. To our knowledge, exist protection schemes does not cover arbitrary 

data. Fortunately, a lexical analysis is sufficient for detecting this type of vulnerabilities.  (Note that 

lexical analysis is not sufficient for buffer overflows.) 
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Fig. 1. Stack Smashing  (Taken from Howard [19]). 

 

 

 
 

Fig. 2. An example of a multistage buffer-overflow attacks. 
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Fig. 3. Buffer-Overflow Attacks on Pointers. 

 

“Integer overflows”, also referred as “integer arithmetic” attacks, are presented as a variation of 

buffer-overflow attacks [22]. The main idea is to attack the arithmetic used for validating the size of 

buffers (bound checking).  With invalid calculation, accessing the wrong-sized buffer is likely to result 

in buffer overflow. This type of attack can be protected by more robust schemes. 

The classic password attack [23] serves as an example of attack on local variables. By overflowing 

a variable containing stored password, an arbitrary password can result in privilege access.  There is no 

control data involved in this attack. Hence, it cannot be prevented with existing protection schemes. 

 

4. Prevention 
 

Up to this point, the malicious behaviors of buffer-overflow attacks have been unveiled. The necessary 

conditions for preventing buffer-overflow attacks will further be discussed in this section. 

From our basic buffer-overflow example, we saw that preventing the actual overflow (e.g. through 

bounds checking) is an obvious prevention scheme. Though preventing the overflow sounds simple, in 

practice, it has turned out to be difficult to implement—hence the continual appearance of buffer-

overflow attacks. The problem persists because there is no general mechanism in use across languages 

in use that can perfectly specify such capacity.  The persistence of overflows motivated a different 

approach. 

Because preventing the overflow of a buffer is not working in practice, researchers decided to try 

focusing on the address (B in our basic example).   If malicious manipulation of the address can be 

identified, we can prevent the jump to that address.  That is, we can stop the attack right at the moment 

that the attacker actually takes control. 

The critical observation is that the address that the attacker inserts comes from outside the current 

running process.  If we can identify external data, we can recognize that a control address now contains 

external data.  External data in a control address is bad because someone else can now control your 

program flow. 

It would be nice to preserve the integrity of control data by not allowing external data (i.e. from 

outside this process) into it.  However, it is equally effective if we recognize that external data is in the 

control word and prevent a jump to it.  From our basic example, we would recognize that B now 

contains external data, so do not jump to that address. 

To summarize: a buffer-overflow attack redirects the control flow of a program to execute 

malicious code. An address must necessarily be modified to achieve this objective. Should attackers fail 
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to modify the address, the attack fails.  Should a system detect the modification of the address, we can 

recognize and stop buffer-overflow attacks.  

 

5. Protection schemes 
 

Up to this point, we have established a basis for understanding buffer-overflow attacks, so we can now 

examine current approaches to protect against them. We partition the approaches into four broad 

categories: correct code, static analysis, dynamic solutions, and isolation. Approaches that allow 

programmers to vulnerable code related to buffer-overflow attacks are static analysis. Approaches that 

guard or monitor target data or source of buffer-overflow attacks are dynamic solutions. Approaches 

that do not stop the attacks but seek to limit the damage caused by the attacks are isolation.  

 

5.1. Correct Code 
 

The whole field of software engineering is premised on writing correct code. In particular, provably 

correct code should be free of known vulnerabilities. For example, Microsoft has recently devoted 

significant resources toward creating code without exploitable vulnerabilities—a subset of totally 

correct code.  Their effort, called the Security Development Lifecycle [13], represents how one of the 

largest software companies implements the development of secure code. Since these techniques are not 

widely applied, vulnerable code persists.   

Also, correct code is not a panacea. For example, the conditions under which code is run may 

change so that assumptions used for correctness can become invalid over time.  A recent example is the 

Windows WMF vulnerability (CERT VU#181038 [2]), which allows an attacker to work through image 

metadata to execute arbitrary code, i.e. take complete control.  The path is through a Graphics Device 

Interface (GDI) function  (SetAbortProc), which first appeared in Windows 3.0 in 1990 and provided 

important functionality in that context.  Later versions of Windows made the GDI functions available 

from metafiles, that is, a different context, resulting in the vulnerability.  In fact, the exploit does not 

work on earlier versions of Windows because the code works correctly in the context for which it was 

originally designed [19]. 

Another example of the failure of correct code is when the implementation allows circumvention. 

In 1987 Young, et al. provided the classic example of a provably correct login routine on a successful 

commercial computer whose memory layout allowed easy circumvention [23].   

 

5.2. Static Analysis 
 

Given a set of known vulnerabilities, we can simply avoid buffer-overflow attacks by fixing or 

replacing the vulnerable functions. Since this approach works on source code, it is called “Static 

Analysis.” 

Before deploying a program, static analysis can be applied to find and solve the potential problems. 

To do so, we simply use a predefined knowledge to analyze the source code or binary. For example, 

knowing that the “strcpy” function in C programming language, a string copy function with no bounds 

checking, is suspicious to buffer overflow, we can create a profile to search for any use of the function 

and warn the programmer of the potential threat.  

A generic static analysis algorithm is as follows 

 
// Static Analysis 

1. Open file of signatures 
2. Search target source code for signature code 
3. if (signature found)  

replace with less vulnerable code  
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5.3.  Dynamic Solutions 
 

Since the targets of the attackers are control data, validating the integrity of these data would allow us to 

detect buffer-overflow attacks. We refer to this class of protection schemes as “Dynamic Solutions”, 

because the systems dynamically manage and verify data in during the execution.  

 
// Dynamic Buffer-Overflow Protection 

// At run time …  

 

1. Tag control data 
2. if (accessing_control_data && legal_tag) 

  continue 

else 

  raise exception 

 

In order to validate (and identify) the integrity of data, it is necessary to have a tag, “metadata” 

associated with the data. To check the integrity of data, we can simply validate the tag against the data. 

We differentiate approaches by comparing four components of each dynamic solution: 

 
1. Underlying assumptions of the approach 
2. Creation of metadata 
3. Validation of metadata 
4. Handling of invalid data 

 

We provide two examples to illustrate these components. 

 

Example 1: 

In this first example, buffer overflows are prevented by detecting if control data being used is derived 

from input (including buffers).  In this case, input is being tagged by metadata. When any data is used 

by control instructions (e.g. branch, return, or call), the system (hardware or software) must verify the 

metadata to determine that if it is input (by verifying the metadata). In case it is input, an exception is 

raised. 

 

Example 2: 

In this second example, return addresses can only be created by call instructions.  When a return address 

is created, it must be tagged by the call instruction. Other instructions must clear the metadata tag. 

Return instruction must verify that the address has a valid tag (not modified by other instruction) before 

executing the return. If the return address is invalid, an exception is raised.  

 

The two examples are different in that their solutions are based on different assumptions. However, 

they share the same idea that a tag (or metadata) is necessarily attached to critical data. They differ in 

that the first example tags input in general while the second example specifically tags return addresses.  

Dynamic methods can also be differentiated in how the metadata is stored. In general, there are two 

types of metadata: hardware supported and software managed metadata. Hardware solutions require 

modification of either hardware organization or instruction set architecture or both. For software 

managed metadata, the metadata is (mostly) managed by software as normal data. In general, prologue 

and epilogue are inserted to the program for the creation, validation, and handling of metadata.  

Using these components, we can broadly classify dynamic solutions into four subcategories: 

 Address Protection 

 Input Protection 

 Bounds Checking 

 Obfuscation 

Like Example 2, the address protection schemes assume that addresses (control data) are critical 

data and must be tagged. Solutions in this scheme modify functions that create the address (e.g. call 
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instruction) to create the metadata, and modify functions that use the data to verify them. The 

management of metadata varies among each scheme within this subcategory. 

The input protection schemes, such as Example 1, tag input as untrustworthy and invalidate them 

from being used as internal control data. The main idea is “All input is evil until proven otherwise” [13]. 

For the hardware solution, hardware provides mechanism for associated metadata with the data (e.g. 

tagged architecture). If there is an attempt to use input as control data, we can recognize it by validating 

metadata.  The management of metadata is the major difference among them. 

Another method is to explicitly validating the boundary of every access to the memory. In this case, 

a block of data is associated with metadata. This metadata is used to specify base address and limit of 

each memory reference. We refer to these schemes as bound checking. 

Alternatively, it is possible to obscure memory. This would make it difficult to maliciously 

manipulate the memory though buffer overflow. Given that buffer-overflow attacks can only be done 

when a memory snapshot is deterministic. The random snapshot would be to attack.  Hence, it is 

extremely hard to write a generic attack script. This class of protection is referred as obfuscation. 

 

5.4. Isolation 
 

Isolation schemes limit the damage from attacks rather than preventing attacks. As a result, their 

protection is not limited to buffer-overflow attacks.  This category includes sandboxing and 

confinement schemes. 

By creating an electronic curtain, isolation schemes can prevent a vector of attack or limit the 

damage causing by the attack.  For example, it is possible to prevent a certain part of memory (e.g. 

stack) from being used as storage for executable code (i.e. NX).  Alternatively, we can jail a 

compromised process from accessing other parts of memory to contain the damage (i.e. Sanboxing 

applet).  

As with dynamic solutions, isolation can be implemented purely in software or with support from 

hardware.  

 

5.5. Summary of Protection schemes 
 

In this section, taxonomy for classifying of buffer overflow protection is presented (in Fig. 4). We use 

three main ideas for the classification: fixing the function, protecting the data, or limiting the effects. In 

this paper, we refer to these schemes as Static Analysis, Dynamic Solutions, and Isolation respectively. 

We will continue to review various proposed solutions in the next section. 

 

 
 

Fig. 4. Taxonomy of solutions against buffer-overflow attacks. 

 

6. Reviews 
 

This section elaborates the proposed buffer-overflow attack solutions. 

 

Buffer overflow Protections 

Static analysis Dynamic  Solutions 

Lexical Analysis 

Semantic Analysis 

Isolation 

NX 

Sandboxing 
Bounds Checking 

Input Protection 

Address Protection 

Obfuscation 
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6.1. Static Analysis 
 

To detect for possible buffer overflow vulnerabilities, tools have been proposed to examine source code. 

A simple tool is a string search. More sophisticate tools are lexical analyzer and parser. With these tools, 

programmer can prevent the potential problem before the deployment of software. With no run-time 

information, all problems may not be detected. Regardless of the false positive, the final solution is still 

depending on the skill of an individual programmer. 

Besides the limitation in detection an overflow in a user-defined function and macro, the main 

drawback of these tools includes (but is not limited to) false alarms. 

 

6.1.1. Lexical Analysis 
 

Sample tools include “It’s the Software Stupid!” (ITS4 [25]), FlawFinder [26], RATS [27], STOBO 

[28], and LibSafe [29].  

ITS4 uses lexical analysis and matches tokens in C and C++ against a database of known 

vulnerabilities. It is useful for highlighting potential security problems as code is written. The report 

generated from ITS4 includes a short description of the problem, a suggested solution, and the severity. 

FlawFinder [26] and RATS [27] are similar tools that scan source code using lexical analysis. 

Basically, FlawFinder uses the same method as that of ITS4. However, the report generated from 

FlawFinder is associated with each arguments of each function. A constant string is considered to be 

safer than a variable string. In addition to C, RATS also supports Perl, PHP, and Python source code. 

The Systematic Testing Of Buffer Overflow (STOBO [28]) is an interesting static analysis tool for 

C programs. It uses profiling to generate its report. This tool will insert special functions into the 

original program to keep track of each variable and memory allocation. Running the modified program 

will provide dynamic analysis from the runtime environment. 

LibSafe [29] is the implementation of static analysis in the run time environment. It is a safe 

implementation of a library that is forced to be loaded before the standard C library. Since the library is 

accessed in the order of loading, Libsafe is able to intercept the known vulnerable functions (e.g. strcpy, 

strcat).  

 

6.1.2. Semantic Analysis 
 

Sample tools are Splint [30] and BOON [31].   

Splint [30] statically checks for possible vulnerabilities in a C program. It is a variation of Lint, a 

popular static analysis tool for C since the seventies. Splint uses a parser to perform semantic analysis. 

This means that the tool has a better chance of finding an incorrect use of a function than the lexical 

analysis counterpart. 

BOON [31] is another tool for C programs. It statically checks for security vulnerabilities. In Boon 

a string is considered as an abstract data type. Thus, it indirectly performs bound-checking analysis. 

These two ideas provide a framework for the analysis. 

 

6.2. Dynamic Solutions 
 

Several dynamic solutions have been introduced. Each method varies in assumption, choices of 

metadata and management scheme, or handling routines.  We will review them in the following order: 

Address Protection, Input Protection, Bounds Checking, and Obfuscation. For each method, we will 

pinpoint the choice of metadata and the management of the metadata. 

 

6.2.1. Address Protection 
 

There are several similar methods that share the assumption of protecting the address. However, they 

use different types of metadata. These variations include: a canary value, tagged memory, and hardware 

stack. Though some solutions in this class have become obsolete as attacks have matured, they are a 

good initial step in preventing buffer-overflow attacks. 
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6.2.1.1.  Canary Words 
 

Assuming that corrupting an address will also corrupt the adjacent data, the validity of address can be 

verified by validating special adjacent metadata (the canary word)
1
. The general mechanism can be 

described as: 

1. Place a word (canary) adjacent to the address (e.g. return address) on creation (by a call 

instruction). 

2. Verify the canary word before using the address (e.g. before a return instruction uses a return 

address). 

 

There exist several tools that adopt the concept of canary words. The notable methods are 

StackGuard [6, 32, 33, 34] and ProPolice [7]. StackGuard assumes that return addresses must not be 

modified after creation and hence puts a canary word adjacent to the return address. The creation and 

validation code are injected by a compiler and assume that a buffer overflow occurs only in one 

direction; ProPolice then   reorders the declaration statement to protect against function pointer attacks. 

Since an overflow only goes in one direction, declaration reordering can prevent the function pointer 

from being overflowed.  

Figure 5 shows the sample of the reordering process. However, this can only protect some variables 

from being overflowed, but not other variables that are still in the overflow direction. 

The main drawback is that buffer-overflow attacks have changed in response to this type of 

protection to now attack other addresses. In addition, there exists no mechanism for protecting the 

canary word itself (See [35] for more details). 

 

Original Code Reorder Code 

Int bar() { 

 void (* funct2)(); 

 char buff[80]; 

 ….. 

} 

int bar() { 

 char buff[80]; 

 void (* funct2)(); 

 ….. 

} 

 

Fig. 5. Sample of code reordered by IBM ProPolice. 

 

6.2.1.2. Address Encode 
 

Knowing that encryption can help preserving the integrity of data, the same concept is applied to protect 

the integrity of addresses (e.g. function pointers or return addresses). In this type of protection, the 

metadata is the key used to encode the data. The general mechanism can be described as: 

1. Encode an address with a pre-defined key before storing it to the memory. 

2. Decode the address on dereferencing (loading back to the processor). 

 

The most obvious examples of this scheme are PointGuard [36] and Hardware Supported 

PointGuard [37, 38]. These methods assume that a pointer must not be modified after creation and use a 

per-process random key for encrypting pointers (generated by software or hardware supported hash 

table). Besides issues with long-time key management, encrypting a pointer can be problematic with 

arrays (including C strings) and compile-time assignment. The same issue may also apply to shared 

libraries and interposes communication. 

 

6.2.1.3. Copy of address 
 

A simple method for preserving the integrity of an address is to preserve another copy of the address. 

The mechanism can be described as follows: 

1. Create a safe copy of the control data (e.g. return address) on creation. 

2. Verify the address against the safe copy before using it (e.g. on return). 

                                                 
1

  A canary word is similar to a canary in a mine: if the canary dies, that indicates a problem.   
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Several similar tools exist. However, we choose to review a subset including: StackGhost [8], RAS 

[39, 40, 41], Split Stack [40], SmashGuard [42], RAD Compiler [5], RAD Binary Rewrite [43], DISE 

[44], StackShield [45], LibVerify [29], and SCACHE [46].  

The main differences are in the storage of the redundant copy of the address and the management 

scheme. For example, StackGhost uses the feature of SPARC processors, register window, for storing a 

copy; and RAS makes use of the Return Address Stack (RAS), a hardware accelerator for predicting 

return addresses in some processors.  Similarly, RAD, Split Stack, StackShield, Libverify, and 

SmashGuard allocate a separate stack for storing return addresses. SCACHE uses cache for managing a 

replica of the return address. 

These solutions mainly suffer from the dynamic optimization of control flow (e.g. such as long 

jump). In addition, they only provide a partial solution—mainly to the return address. 

 

6.2.1.4. Tags 
 

Tagged Architecture [16] 

Tagged memories go back at least thirty years with many proposed architectures and a few that made it 

to market. For our purposes, tagged-memory architectures provide three main functions.  The first 

supports language, and, the Symbolics [15] Lisp computer, which achieved a relatively short-lived 

commercial success, is a classic example.  In that computer, the tags were used to efficiently keep track 

of dynamic types. The second type uses tags to support capabilities. Capabilities reach back forty years, 

and their popularity has increased recently with increased interest in security exemplified by capability-

based operating systems such as EROS [47].  The tags support the capabilities that control access. The 

third is best exemplified by the IBM System/38 [48] database computer (the predecessor of the IBM 

AS/400), which used a tag to protect pointers. Of those, it is the IBM System/38 that is relevant to this 

survey. 

The general idea is to use a special instruction for creating and validating addresses. Though this 

method sounds promising in that it forces a program to separate addresses from data, it cannot generally 

apply to legacy code. In other words, a program may have to be modified to use this solution. 

 

6.2.2. Input Protection 
 

Assume that misuse of input as control data can be a potential threat, it is necessary to differentiate 

them from local data. In this section, three methods that share the same assumption will be reviewed. 

They are: Minos [20, 49], Tainted Pointer [50], and Secure Bit 2 [51]. Besides the similar assumption, 

their implementations are fundamentally different. In particular, input is interpreted as data across 

segments in Minos. For Secure Bit 2, input is data passing from another process (through the kernel).  

For Tainted Pointer, input is data passed from the operating system. 

These methods utilize a tag bit to differentiate between local data and input. However, they differ in 

the definition of the boundary. For example, Minos uses segmentation to define boundaries. While 

Tainted Pointer implicitly assumes that the I/O subsystem is a boundary, Secure Bit allows users and 

operating systems to freely mark anything as input.  

This concept sounds promising. However, some may experience problems with multi-threaded 

programs (e.g. Sun Java JVM) where a group of processes is considered to be one big process and they 

pass addresses among themselves. Though Tainted Pointer tries to extend this concept to protect 

pointers in general, it ends up creating a new vector for attacks in that an instruction (e.g. compare) may 

be needed to untaint data. 
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6.2.3. Bounds Checking 
 

In Bounds Checking, the methods assume that all accesses to data must be done within the boundary of 

that variable. We will review two main approaches: software and hardware approaches. For the 

software, the implementation can be a modification to the compiler of current languages or virtual 

machine solutions (e.g. type-safe programming languages). 

Examples of  run-time software solutions are: Array Bounds Checking [52], Rational PurifyPlus 

[53], and BoundsChecker [54]. Array Bounds Checking [52] is a backward compatible bounds checking 

in C. Since, the method does not change the representation of a pointer. Thus, it is compatible with the 

standard C library. For every pointer, a base pointer is defined. A pointer value can be used only for a 

region. Enforcing bounds checking is simply archived by validating that a memory access is within the 

specify region defined by the base. Besides being useful, a program may suffer from more than a 30 

times slowdown (in a pointer-intensive program). This is directly an overhead of a symbol table. Thus 

the application of this tool is limited for debugging purpose. A similar case also applies to Rational 

PurifyPlus [53], BoundsChecker [54], SafeC [24], Fail-Safe [55], and [56]. Conceptually, we can 

view this approach as a software implementation of segmentation, which uses an entry in the symbol 

table as a segment descriptor. 

Segmentation is a novel hardware for enforcing bounds checking. Though primarily designed to 

assist the management of memory relocation, it is used to provide buffer-overflow protection. In the 

design, only a base register is mandatory for each memory access. IA-32 and I432 [57] associate 

segmentation with base, limits, and hardware rings. By associate every buffer with base and boundary, a 

buffer overflow is detected. The drawback is performance degradation and storage required for storing 

segment descriptor. IA-32 forces that memory accesses must be done though segmentation (in protected 

mode). However, it can be bypassed by creating one large segment for whole memory. Since 

segmentation is not common in among architectures, most operating systems bypass segmentation for 

gain better performance and portability. I432 is another interesting CISC architecture. The main concept 

of the design is to create a security-aware processor. With ADA programming paradigm, a function is 

forced to create a new segment as well as a variable has to define data ranges. Giving that I432 

instructions ranging from six to 321 bits and each are 10 to 20 times slower than the contemporary 

VAX 11/780 [58], it was commercially failed.  

Similar ideas can also be used with a pointer. For example, ICL 2900 series systems [16], the 1960s 

architecture, natively supports hardware 'pointer' (a.k.a. descriptor) similar to BoundsChecker. Any 

dereferences outside the boundary will be detected. 

Another approach is to enforce bound checking in run-time environment such as the virtual 

machine used by type-safe programming languages (e.g. Java Virtual Machine, .Net framework) and 

interpreted languages. The address bounds checking was accomplished by embedding the metadata and 

bounds checking mechanism into the virtual machine (run-time environment). Correct bounds checking 

can prevent buffer overflows. Though the virtual machine can transparently validate storage capacity, 

the underlying components, standard libraries, and the virtual machine are still C/C++ programs, which 

are type-unsafe languages. A program created in Type-safe languages can still be vulnerable by buffer 

overflows. For example, there have been buffer-overflow attacks in Java [26, 4], Perl [59], etc. There 

also exists a type-safe C: CCured [60]. 

Bounds checking generally suffer in performance. Unless a segment is created for every variable, it 

is possible to overflow within a segment. In addition, code with bounds checking tends not to be 

compatible with legacy code without such a mechanism. 

 

6.2.4. Obfuscation 
 

When there is no appropriate solution, confusion and increased difficulty can be used as a protection 

mechanism. However, it should not be used alone when other methods are applicable [61]. The most 

obvious example is Address Obfuscation [62]. Conceptually, this method reorganizes the memory area 

of each process to make it difficult for attackers. Changing the memory alignment, malicious users will 

encounter difficulty in overwriting the expected addresses. A compiler is modified to randomly relocate 

the base addresses of memory segments and the offset between each pair of data items It also permutes 

the order of variables/routines. A similar mechanism is implemented in the Address Space Layout 
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Randomization (ASLR) schema of the PAX project [63], which Microsoft has included in Windows 

Vista. The ASLR goes further by changing the layout on each reboot. Since the randomness does not 

occur during execution, a dissembler tool can still reveal the necessary information, but having every 

installation of an operating system with a different layout helps defeat generic attack tools. 

 

6.3. Isolation 
 

Two concepts are being used for isolation. One is to control the execution of code that may result from 

buffer-overflow attacks. Another idea is to sandbox the whole process from accessing certain system 

resources based on a predefined policy. Apart from these two main ideas, variations include the 

isolation of executable code from being installed or modified during run-time. 

Non-Executable Memory: Another common technique is non-executable partitions of memory, 

such as pages or segments. SPARC processor, as well as several architectures, supports non-executable 

memory. Recently, AMD (and Intel) added a “NX”[64], a similar feature. The main idea of non-

executable memory is to limit code execution to a defined region and. By marking stack, a region for 

storing local buffer from being executable, a class of buffer-overflow attacks that requires code 

injection is detected. Microsoft finds NX sufficiently useful to encourage users to enable it.  The Solar 

Designer group [65] and INGO [66] also proposed a patch to the Linux kernel to make a non-

executable stack. However, it is still possible to render buffer overflow on return address—leaving the 

system to be attacked with a valid code in other memory region (code, BSS). Nonetheless, this solution 

cannot be applied in some cases. For example, a signal handler on Linux (trap) generates code on the 

stack and executes it on top of stack. Moreover, a functional language, any LISP-like languages, 

requires an executable stack in their normal operation (a.k.a. trampoline). As a result, only a narrow 

range of attacks is protected.  

SPEF: Alternatively, researchers from Microsoft and the University of California at Los Angeles 

have developed a Secure Program Execution Framework [67] (SPEF). Instead of protecting the data, 

the method protects the code. The method makes an installation and an injection of malicious code 

difficult if not impossible. With SPEF, hardware and compilers are working together to dynamically 

encrypt and transform code during execution. As a result, install a malware can only be done with 

special process. However, overflowing the buffer and modifying the control data to a known address is 

still possible. Based on 3DES and domain ordering hardware, SPEF should experience performance 

difficulties and may not be feasible for general applications. Another implementation that shares the 

same concept but uses instruction block signature is [10]. 

Instruction-Set Randomization: Similar to SPEF, Instruction-Set randomization [9] introduces 

difficulty in injecting the malicious code. The general idea is to randomize the coding of instructions by 

XORing them with a key. The authors propose a per-process key schema, which makes it difficult for a 

dynamic-linked library. As a result, the method supports only static-linked libraries. The technique can 

also be applied to scripting languages by adding a random number at the end of each instruction and 

modifying the virtual machine to validate the number in each instruction. In [9], an example of random 

Perl is presented. The drawbacks are the lack of support for dynamic-linked libraries, the requirement of 

special hardware, and the limitation of using polymorphic and self-modifying code. Like SPEF, which 

only prevents the injection of malicious code, overflowing with a known address is possible. 

Sandboxing: Sandboxing is a type of policy-enforcement mechanism. Given the malicious nature 

of buffer-overflow that is a result from information passing from another domain, sandboxing has 

nothing to do with buffer-overflow attacks. With appropriate policy rules, the damage can be contained. 

Several levels of sandbox exist: kernel level [68], user level [69, 70, 71], or even hardware-supported 

sandboxing (e.g. Intel LaGrande [72], TCPA [73,74], TrustZone [75], Microsoft NGSCB [72], 

ChipLock [76], Bear [73].) In addition, a fine-grained approach to memory management (e.g. MMP 

[77]) exists. However, only a perfect combination of a security policy and an implementation can 

prevent buffer-overflow attacks.  We believe that it is complementary to other techniques rather than a 

replacement. 
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7. Analysis 
 

The ideal solution against buffer-overflow attacks is to create a correct program that is safe from buffer 

overflow attacks. However, contemporary programming methods cannot delivery this ideal condition at 

the moment.  

Given the definition of buffer overflow and buffer-overflow attacks, the protection schemes will be 

analyzed by raising issues critical to protections against buffer-overflow attacks. Those issues are: 

Common Pitfalls, Performance, Compatibility (Transparency), and Deployment and Cost. 

 

7.1. Pitfalls 
 

Buffer-overflow prevention, like many security efforts, has been an “arms-control race” in that attacks 

have evolved to counter prevention schemes, which in turn require increased sophistication in 

prevention.  In hindsight, we can look back and see why earlier efforts failed. Two themes have 

emerged: 

1. Insufficient assumptions. Some approaches only provide protection against a subset of buffer-

overflow attacks. It is likely the maturing of buffer-overflow attacks that have shifted their 

target. For example, the best known type of buffer-overflow attack modifies return addresses. 

As soon as developers protected the return address, function-pointer attacks became popular. 

Another example is trusted code. It can be wrong to assume that trustworthy code is 100% safe 

from buffer-overflow attacks. Compromising the signed code or the signing mechanism allows 

execution of malicious „trusted‟ code. 

2. Insufficient protection of metadata. Metadata is necessary to assist in protecting critical data. 

Ideally, metadata must not be controllable by attackers. If attackers can control the metadata, 

they can successfully create buffer-overflow attacks by modifying both data and metadata. For 

example, if a key or canary can deterministically be reproduced, attacking an encrypted data or 

guarded canary is possible (More examples in [35, 78,79]). 

 

7.2. Performance 
 

In the tradeoff between performance and security, performance has always received priority. This is 

best exemplified by segmentation (e.g. I-432 [57]). An appropriate utilization of segmentation is a 

perfect tool, if one is willing to explicitly declare each variable with a base and limit (including those of 

integer and floating-point variables, since buffer overflow can also result from type casting). However, 

the tremendous overhead of the symbol table (or the segment-descriptor table) for such an approach is 

unacceptable.  

 

7.3. Compatibility (Transparency) 
 

Given a large number of existing programs and libraries, backward compatibility can be a significant 

requirement. A good product can fail in the marketplace, if it breaks too many things. This paradigm 

also applies to computers. Here are some compatibility issues critical for solutions against buffer-

overflow attacks.  

 Data representation is a critical problem, if the data representation of the prevention scheme is 

not interoperable with legacy software libraries. An example is the pointer (and array) 

representation of PointGuard. 

 Non LIFO control flows include signal handling, trampoline (a type of software optimization 

where code is dynamically generating and running on top of the stack frame), and far and near 

call optimization [21]. In most cases, methods that try to create a redundant copy of data of the 

stack frame will fail to support the dynamic stack management of non-LIFO control flows. 

Examples of these methods include: Separated Stack, RAS, RAD, etc. 

 Binary Compatibility is perhaps the most difficult goal in implementing solutions against 

buffer-overflow attacks. To support binary compatibility, the solution must maintain not only 

the same data representation, but it also has to maintain the programming model, the 

communication protocol (e.g. call and return), and the syntax of every instruction. Most 
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solutions presented here fail to achieve this goal. However, some code modifications may be 

necessary in order to provide protection.  For example, a minor modification such as a patch to 

the operating system may provide protection while preserving binary compatibility for all user 

code. Secure Bit 2, which embedded the mechanism in the hardware, provides binary 

compatibility for user code. Approaches that use binary rewrite by modifying the program 

loader also can provide binary compatibility. 

 

7.4. Summary 
 

In Table 1 we show a summary of our analysis of all the protection schemes. This analysis refers to 

schemes in general. That is, not all schemes map perfectly into our table. However, we believe that this 

tabulation provides a useful overview of the variety of approaches. 

The best solution is secure software developed using state-of-the-art software engineering.  In the 

absence of that, the table indicates that embedding Input Protection into the processor provides the best 

combination of coverage, penalty and compatibility. Though bounds checking can prevent overflows, it 

often has a significant performance penalty. When it is possible to rebuild a program and libraries, 

Address Encoding is promising. However, security is then dependent on another issue: the key-

management scheme. When recompiling a program is not possible, Software/Hardware Isolation can 

provide limited protection. 

Given the analysis shown in Table 1, a developer may choose to apply compiler solution (e.g. GCC 

4) to assist the detection of address protection. During the software development, a dynamic flow 

tracking tool (input protection) may ease detecting possible vulnerability.  As a last resource, compiler-

assisted obfuscation (e.g. GCC 4, MS VC++) and operating systems-assisted obfuscation (e.g. MS 

Windows Server 2008) would provide minimal protections. Note that hardware-based NX (AMD/Intel 

NX) can only provide protection against small class of attacks, but it is already included with a new 

purchased system.  

 

8. Conclusions 
 

When a malformed input is used to overflow a buffer, buffer-overflow attacks occur. This results in a 

malicious or unexpected behavior of software. Collectively, protection against buffer-overflow attacks 

is based on an ability to detect and validate control data. Intuitively, from this observation, some 

metadata is necessary to distinguish between input and local data.  

Among the proposed solutions, there are only three themes: preventing functions from overflowing 

data, protecting target data or tagging data that may cause buffer overflow, and limiting the effects 

caused by buffer-overflow attacks. These themes are embedded in Static Analysis, Dynamic Solutions, 

and Isolation respectively. 

While we have to rely mostly on programmers‟ skill, the most practical solutions today are 

solutions that based on address protection scheme and obfuscation scheme. This is due to the fact that 

they can be applied easily without the modification of underlying architecture. (i.e. programs, compiled 

with a special compiler, are less vulnerable to buffer-overflow attacks.) This direction is being pursued 

by the software industries. 

In the big picture, every solution that protects against buffer-overflow attacks comes at some cost. 

Also, as attacks have matured some solutions have proven insufficient for providing full protection 

against all classes of attacks. .  In particular, provably correct code should eliminate buffer overflows 

(as well as most other errors).  However, currently these techniques are not widely applied, so 

vulnerable code persists. We conclude that no solution except correct code is perfect in every aspect. 
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Table 1. Comparison of Protection schemes. 
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Static Analysis Y Y Mid Compiler High N Lo 

Address 

Protection 
       

Canary Word Y N Mid Compiler Lo N Lo 

Address Encode Y Y High Compiler Lo N Lo 

Copy of Address Y N Mid Compiler Lo N Lo 

Tag Y Y Mid HW/Compiler Lo N Lo 

Input Protection Y Y High HW Lo Y Lo 

Bounds Checking        

Segmentation Y Y High HW/Compiler Mid N Mid 

Run-time 

Extension 
Y Y High Compiler Mid N High 

type-safe Y Y High VM Mid N High 

Obfuscation Y Y Lo Compiler Lo  Mid 

Isolation        

NX Likely Likely Mid HW Lo Y Lo 

HW Sandbox Likely Likely Mid HW Lo Y Mid 

SW Sandbox Likely Likely High Compiler/VM Mid Y High 

Instrument Likely N Lo HW/VM High N High 

*Function pointers also include global-offset table. 

 

8.1. Future research 
 

Research in buffer overflows are now heading in two directions: security-enhanced programming 

languages (including debugging tools) and dynamic run-time environment that can transparently detect 

and prevent systems from possible vulnerabilities. For the first direction, researchers aim at enhancing 

programming language and development environment to avoid buffer-overflow vulnerabilities in the 

first place (i.e. static analysis). These solutions include a patch to a compiler to perform analysis during 

code compilation. Another direction aims at preventing buffer-overflow attacks without modifying 

binaries. Both directions are being researched heavily. Nonetheless, they are not mature enough to 

completely render buffer-overflow attacks impossible. Given the history of buffer-overflow attacks, we 

believe that a practical solution to buffer-overflow vulnerability is still an open topic.  
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