Experimental Study & Optimization of Machining Parameters in Turning of AISI 1040 Steel with Micro-grooved WC Cutting Tools

  • P. N. L. Pavani GMR Institute of Technology
  • C. L. V. R. S. V. Prasad GMR Institute of Technology
  • K. Ramji Andhra University

PDF Downloads

Download data is not yet available.


In dry turning, control over chip formation and the need for the automated machining lead to an advancement in cutting tools. Such concern towards chip breakability is necessary in reducing tool wear, tool tip temperatures and surface roughness of workpiece material. The present study proposes a new development in the traditionally available cutting tools, which acts like a chip breaker. A series of micro-grooves are machined on the rake face of Tungsten carbide (WC) cutting tools using sinker Electric Discharge Machine (EDM). These micro-grooved tools are used to dissolve long continuous chips and heat from the cutting zone in the dry machining of AISI 1040 steel. The results of micro-grooved cutting tools have shown improvement in reducing the tool tip temperatures and surface roughness compared to the conventional cutting tools. The consolidated chip flow phenomenon of plain WC tools is used to decide the location of micro-grooves on the tool rake face. A Taguchi orthogonal array is used to design an experimental layout with minimum number of repetitions in the experiments. Signal-to-noise  ratios and ANOVA is used to understand and identify the significant factors & their level among the input variables on responses.From the results, it is identified that the cutting speed is the most influencing parameter for tool tip temperature at level 1 (i.e.112 m/min) and surface roughness at level 5 (i.e.720 m/min).

Author Biographies
P. N. L. Pavani

Department of Mechanical Engineering, GMR Institute of Technology, Rajam, Andhra Pradesh, India

C. L. V. R. S. V. Prasad

Department of Mechanical Engineering, GMR Institute of Technology, Rajam, Andhra Pradesh, India

K. Ramji

Department of Mechanical Engineering, Andhra University, Visakhapatnam, Andhra Pradesh, India

Dry machining, rake face, sinker EDM, micro-grooves, signal-to-noise ratios and ANOVA.

Authors who publish with Engineering Journal agree to transfer all copyright rights in and to the above work to the Engineering Journal (EJ)'s Editorial Board so that EJ's Editorial Board shall have the right to publish the work for nonprofit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors' personal use or for company use if the source and EJ's copyright notice is indicated, and if the reproduction is not made for the purpose of sale.

Article Statistics
Total PDF downloads: 93