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Abstract. Processes involving materials in gaseous and powder states cannot be modelled 
without coupling interactions between the two states. XDEM (Extended Discrete 
Element Method) is a valid tool for tackling this issue, since it allows a coupled CFD-
DEM simulation to be run. Such strength, however, mainly finds in long computational 
times its main drawback. This aspect is indeed critical in several applications, since a long 
computational time is in contrast with the increasing demand for predictive tools that can 
provide fast and accurate results in order to be used in new monitoring and control 
strategies. 

This paper focuses on the use of the XDEM framework as a tool for fine tuning a 
lumped representation of the non-isothermal decarbonation of a CaCO3 sample in powder 
state. The tuning of the lumped model is performed exploiting the multi-objective 
optimization capability of genetic algorithms. 

Results demonstrate that such approach makes it possible to estimate fast and accurate 
models to be used, for instance, in the fields of virtual sensing and predictive control. 
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1. Introduction 
 
Several engineering fields have started demanding numerical models that are able to reproduce a physical 
process in a fast and accurate way. This aspect is being enhanced particularly in monitoring and control 
applications, where these models are more and more often used to overcome either technical limits which 
make impractical the use of standard sensors, or to develop new feed-forward control strategies. 

Virtual sensors [1] belong to the first category. In virtual sensing direct measurements on some process 
variables are replaced by model-based estimations from other variables that are measured in a direct way. 
Virtual sensing is a promising strategy, which has started to be successfully applied also in real industrial 
processes [2], and is particularly relevant whenever direct sensing of process variables is unfeasible because 
of technical or economical reasons. 

Feed-forward control is a model-based control strategy where predictive models are used to anticipate 
disturbances before they result in a deviation of the process [3–5]. 

Virtual sensing and feed-forward control are up-to-date research topics, and they both require 
predictive models which should ensure: a) high accuracy in the representation of a process behavior (in a 
virtual sensor the approximations introduced by a model directly affect the measurement uncertainty); b) 
short computational times. 

High accuracy and short computational times are requirements that can be hardly satisfied by the same 
model, especially when a complex physical system is addressed. This is the case of processes involving 
powders: for the intrinsic characteristics of a material in that state a high level of accuracy on its description 
can be achieved only by DEM (Discrete Element Method) models, where each particle is tracked through all 
its history according to a Lagrangian approach. These models, which can involve up to millions of particles 
and are often coupled to CFD (Computational Fluid Dynamics) models, do require both extremely long 
computational times and computational capacities generally available only in computer clusters. With this in 
mind, it is clear how such models cannot be directly used as virtual sensors nor in feed-forward control 
strategies. 

However, an interesting approach is to use such complex modeling techniques to fine tune simplified 
models that could constitute the core of either virtual sensors or feed-forward control strategies.  

This paper aims at discussing the use of a combined CFD-DEM approach based on the Extended 
Discrete Element Method (XDEM) framework [6–14], for tuning a simplified lumped model describing a 
decarbonation process that involves a CaCO3 sample in powder state under non-isothermal conditions. The 
XDEM simulation associated to such process has been already validated by the authors in [15] on the basis 
of experimental data documented by Gieorgieva et al. [16]. 

The tuning of the lumped model by the XDEM simulation is performed by adopting a multi-objective 
optimization strategy based on genetic algorithms. The comparison between results of the two models, when 
applied to a test involving a higher number of particles with respect to the one reported in [15], shows how 
the tuned lumped model can provide a high level of accuracy with less computational effort, thus making it 
suitable both for virtual sensing and feed-forward control strategies.  

The paper is organized as follows: the test case and the XDEM model used for tuning the lumped 
model are described in section II; the lumped model and the optimization strategy adopted are discussed in 
section III; results comparing performances of the two approaches are presented in section IV; section V 
draws the main conclusions of the work. 
 

2. XDEM Representation of the CaCO3 Decarbonation Process 
 
2.1. Experimental Setup 
 
The experimental setup reproduced by the XDEM framework and the lumped model is the one presented 
by Gieorgieva et al. in [16], where small samples of powder CaCO3 of about 5±0.1 mg are loaded without 
pressing into an open platinum crucible (diameter: 6 mm; height: 3 mm). Thermogravimetrical (TG) 
measurements are carried out in a flow of nitrogen (N2, 99.999 %) at a rate of 25 cm3/min under non-
isothermal conditions. The gas flow comes from the bottom of a pipe (diameter: 10 mm; length: 20 mm); the 
crucible is placed in the middle of the pipe. An electrical furnace provides controlled heating of the samples 
up to 1000 °C, at 4 different rates: 3, 6, 9, 12 K/min. During the heating process, the sample undergoes 
decarbonation, and a consequent mass loss occurs: 
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A graphical representation of the TG furnace is shown in Fig. 1: 
 

 
 
Fig. 1. Scheme of the TG furnace. 
 
2.2. The XDEM Framework 
 
The CFD-DEM model was developed by using the XDEM framework, a tool that makes it possible the 
combination of an Eulerian approach for the gas phase with a Lagrangian approach for the powder phase. 

The XDEM framework uses a CFD approach for the description of the gas phase, which is 
consequently modeled according to equations deduced from the Navier-Stokes ones (i.e. conservation of 
mass, momentum and energy). 

A Lagrangian approach based on DPM (Discrete Particle Method) is used for the description of the 
powder phase. In DPM each particle is modelled both in its dynamics and chemical conversion. However, 
predictions of solely motion or chemical conversion in a decoupled mode are also applicable. 
 
2.2.1. DEM approach for the powder phase 
 
In DPM-conversion, a discrete particle is considered to be composed of different phases: solid, inert (i.e. a 
solid phase that does not undergo chemical reactions), liquid, and gaseous, with the gaseous phase 
occupying the porous volume inside the particle. A set of one-dimensional and transient differential 
equations is associated to each particle, describing heat and mass transports along the radial direction r. 
These equations account for: 
 

 Mass conservation for a generic ith specie: 
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with Eq. (2) and (3) valid for solid/liquid and gaseous species, respectively. The porosity of the 

particle, i.e. the fraction of void space respect to the total volume, is represented by the    term; vg is 

the velocity of the gas phase and    is the production or consumption rate consequent to the kth 

chemical conversion. The terms i, Di and Mi represent the mass density, the diffusion coefficient 
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and the molar mass of the ith specie, respectively. Based on the conservation of mass for the 
different species, the porosity of the particles is evaluated as a function of r. 

 

 Conservation of linear momentum: 
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being pg the pressure of the gas phase, g its viscosity and Kp the so-called permeability characterizing 
the morphology of the porous particle. 

 

 Conservation of energy: 
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where p, cp and Tp are, respectively, the mass density, the specific heat and the temperature of the 

particle. The term λeff is the effective thermal conductivity whose calculation is described in [17] and 
Hk is the enthalpy of the kth reaction. 

 
2.2.2. CFD approach for the gas phase 
 
The CFD domain is described on a coarser level respect to the individual channels of the tortuous void 
spaces inside the packed bed of particles. This averaged representation is obtained by defining a 
Representative Elementary Volume (REV). The linear dimension of the REV, LREV, should respect the 
following condition: 
 

           (6) 

 
being L the characteristic length of the problem and LG the microscopic dimension associated with the voids 
inside the packed bed (in the present case LREV is assumed 10 times bigger respect to the diameter of the 
particles). All the thermo-physical and chemical properties of the CFD domain are averaged inside the REVs 
(<> symbol). The Navier-Stokes equations are derived from a model developed for flows through a packed 

bed characterized by the global porosity f. These equations are reported hereafter. 
 

 Conservation of mass for a generic ith specie: 
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being f,i the mass density of the ith specie,     the velocity field and  ̇    a source/sink term that 

accounts for mass transfers between the CFD domain and the particles. 
 

 Conservation of momentum: 
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In Eq. (8), f denotes the deviatoric component of the stress tensor and f represents the viscosity of 
the CFD gas. Kbed and Cbed are empirical terms which are calculated according to the geometrical 
characteristics of the packed bed and the flow regime. Their expressions are reported hereafter (Dp 
denotes the particles diameter): 
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 Conservation of energy: 
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being hf the enthalpy of the CFD gas, pf the pressure and  ̇  a source/sink term which accounts for 

heat transfers between the CFD gas and the particles. 
 
2.2.3. CFD–DEM coupling 
 
Heat transfer and mass transfer for a gaseous ith specie between the CFD gas and the particles are calculated 
according to Eq. (12) and Eq. (13), respectively: 
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being N the total number of particles comprised inside a REV and A the surface area of the particle. The 

coefficients  and i are the heat and mass transfer coefficients, whose expressions are functions of the 
Nusselt and Sherwood numbers of the CFD domain. These heat and mass transfers are included into the 
Navier-Stokes equations as source/sink terms, whilst they provide the boundary conditions to Eq. (3) and 
(5) for each particle, as stated in the following: 
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The Rp term represents the radius of the particle. The terms  ̇     and  ̇    respectively account for 
conductive and radiative heat transfers with all the neighbor particles comprised inside a cutoff distance. 
Their expressions for a generic ith particle are reported in Eq. (16) and in Eq. (17): 
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In the former equations  represents the Stefan-Boltzmann constant,  the emissivity, N and M are the 
number of particles comprised inside the respective cutoff distances for conduction and radiation. The 
contact area Ac is assumed to be quadratic, and linearly dependent on the particles overlap [18]. The view 
factor V is calculated as the ratio between the surface area of the ith particle and the sum of the surface areas 
of the M neighbors. 
 
2.3. CFD-DEM Model 
 
The experimental setup was reproduced using the XDEM framework. A total number of 1000 spherical 
particles (constant diameter of 7.8e-5 m) have been placed inside the furnace at the bottom of the crucible 
(Fig. 1). These particles provide a total mass of 5 mg. Positions of the particles have been obtained by 
running the dynamic module of DPM, which uses a Hertz/Coulomb model for calculating the reciprocal 
mechanical interactions. The dynamic simulation is a highly time consuming one, because the proper 
contact detection requires extremely reduced time steps (1e-4 s in the present case). Particles positions have 
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been therefore calculated once, before running the conversion simulation. The sample is assumed static 
during the whole TG process, even if particles weight changes (this assumption is not expected to 
introduce relevant errors in the representation of the conversion process). 

Particles are characterized by an initial porosity p of 0.1. The initial composition of the solid phase is 
100 % CaCO3, whilst the porous volume is filled with pure N2, i.e. the gas flowing inside the TG furnace. 
The continuous flow of N2 removes the gaseous products of decarbonation (CO2). This holding, and 
considering the inert characteristic of N2, conversion of CaCO3 into CaO is assumed to be irreversible. The 
conversion rates associated to the process are reported hereafter: 
 

                     (18) 
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In Eq. (18) to (20), C denotes the molar concentration. The rate constant k is expressed according to an 
Arrhenius formulation: the pre-exponential factor and activation energy are taken from the experimental 
results of Gieorgieva (7.41e16min-1 and 325.1 kJ/mol, respectively). 

During the TG test, particles constituting the sample are heated by convection from the gas of the 
CFD domain. Heat is redistributed inside the sample, by conduction and radiation. As decarbonation is 
activated, the solid phase of the particles starts converting into CaO: as a consequence, the porosity 
changes and CO2 is released into the void spaces. Then, CO2 is convoyed out of the particles, by a 
combination of advective and diffusive transport mechanisms. The N2 flow of the CFD domain 
continuously removes the CO2 expelled from the particles. A validation of the model discussed so far is 
reported in [15]. 
 

3. Simplified Lumped Model 
 
The thermo-chemical phenomena involved during the TG experiments were also analyzed by developing a 
lumped model of the process. Such model is based on the following three Ordinary Differential Equations 
(ODEs): 
 

      
   

  
       (     )         (  

    
 )        (     ) (21) 

       
   

  
       (  

    
 )              (22) 

  

  
          (23) 

 
For a better understanding of the symbols used in Eq. (21), (22) and (23), the reader is invited to look at the 
“Nomenclature” section of the paper. 

The heat balance over the crucible (Eq. (21)) accounts for convective and radiative heat exchanges 
between the gas and the crucible, and for conductive heat exchange between the crucible and the sample. 
The heat balance over the sample (Eq. (22)) accounts for conductive heat exchange with the crucible and 
heat absorbed by the decarbonation process. The mass balance equation (Eq. (23)) describes the decreasing 
of CaCO3 mass fraction during decarbonation. The reaction constant k of Eq. (23) is a function of the 
sample temperature, and varies according to the Arrhenius formulation reported hereafter: 
 

     
  

          (24) 
 
In Eq. (24), A is the pre-exponential factor, E the activation energy and R the gas constant. 

In Eq. (21), the gas temperature Tg varies according to Eq. (25), where hr represents the heating rate of 
the experiment and t the time base: 
 

                   (25) 
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The model identified by the former equations can be graphically reproduced exploiting a Thermal-
Electrical Analogy (Fig. 2). 
 

 
 
Fig. 2. Thermal-electrical analogy. 
 

A precise evaluation of the conductive heat exchange coefficient between the crucible and the sample 
(h2) and the pre-exponential constant (A) in the Arrhenius equation is difficult and experimental data 
available in literature exhibit large uncertainty. Literature [19, 20] reports values widely ranging between 50 
and 150 W/(m2K) for the heat exchange coefficient between a powder material and solid wall (h2). The 
kinetic of a reaction involving a material in powder state is deeply affected by the shape properties of the 
particles, like the free surface: this introduces high uncertainty in the estimation of the pre-exponential factor 
A of Eq. (24). 

On the other hand, the detailed framework of equations constituting the XDEM approach is effective in 
providing a precise description of the local phenomena at particle scale: in this sense, the conductive heat 
transfer with the crucible is calculated for each individual particle, by computing the correspondent contact 
area. At the same way, the definition of specific physical properties for each particle (instantaneous porosity, 
free surface, etc.) makes it possible to address the conversion process at a great level of detail, going into the 
local particle scale. 

For these reasons, the aforementioned CFD-DEM model was used to tune the h2 and A parameters of 
the lumped model. Such tuning requires the minimization of two main variables: the errors associated with 
the estimations of the mean temperature and the mass loss of the sample over time. This multi-objective 
optimization problem was solved using a genetic algorithm (GA) approach [21, 22] and considering the 
objective functions reported in Eq. (26) and (27). 
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In the former equations, Ti,XDEM and Ti,lumped, and wi,XDEM and wi,lumped represent, respectively, the sample 

mean temperature and mass loss predictions by XDEM and the lumped model at an ith time step during a 
heating process at 15 K/min (the mean temperature esteemed from XDEM is calculated as the average 
temperature of the whole particles constituting the sample). 

The pre-exponential factor A was varied in a ± 50 % range relative to the nominal value (7.41e16 min-1) 
indicated by Gieorgieva in [16]. The h2 coefficient was varied in the range 50-150 W/(m2K) as indicated in 
[19, 20]. The genetic algorithm was run with an initial population size set to 30. After 120 iterations the 
optimization led to the Pareto frontier, i.e. the set of the solutions that cannot be improved in any of the 
objectives without degrading at least one of the other objectives, shown in Fig. 3. 
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Fig. 3. Pareto frontier obtained by the GA optimization. 
 

Among all solutions belonging to the Pareto frontier, it was decided to choose the one minimizing Obj2, 
which corresponds to an h2 coefficient equal to 73.5 W/(m2K) and an A coefficient equal to 1.63 s-1. Mass 
loss is indeed the variable mainly representing the reaction. Therefore, by ensuring minimization of Obj2, the 
correct behavior of the whole reaction is guaranteed. 

Figure 4 shows a comparison between predictions from XDEM and the lumped model for the sample 
mean temperature during the thermogravimetric analysis (the slight underestimation of temperature from the 
lumped element model is due to the specific heat capacity, which is assumed constant and not calculated 
according to the instantaneous mass fractions). An analogous comparison regarding the sample mass loss is 
presented in Fig. 5. The average mean relative error is in the order of 2 %. Computational time moves from 
days-basis for the CFD-DEM model, if run on a single workstation with more than 30 cores, to 1.3 s on an 
Intel I5 core laptop (non-compiled version). 
 

 
 
Fig. 4. Sample mean temperature estimates from XDEM and the lumped model during the 
thermogravimetric analysis. 
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Fig. 5. Sample mass loss estimates from XDEM and the lumped model during the termogravimetric 
analysis. 
 

4. Results 
 
In order to check the correctness of the previous optimization step and the consequent capability of the 
lumped model to provide consistent results for different working conditions, XDEM was used to create 
reference results. A thermogravimetric analysis with varied input parameters was simulated, mainly varying 
the total mass of the sample, 10 mg, and consequently the number of particles (moved from 1000 to 2000), 
and the heating rate (6 K/min) to get the sample from room temperature up to 1000 °C. Table 1 reports the 
XDEM main parameters. 
 
Table 1. XDEM main simulation parameters. 
 

Gas Volumetric flow 25 cm3/min 
N2 weight fraction in gas 99.9999 % 
Sample total mass 10 mg 
Particles radius 7.8e-5 m 
Initial porosity 0.1 
Number of particles 2000 
CaCO3 initial weight fraction 100 % 
Pre-exp. Factor 7.41e16 min-1 
Activation energy 325.1 kJ/mol 
Crucible height 3 mm 
Crucible diameter 6 mm 
Temperature range 20-1000 °C 
Heating rate 6 K/min 

 
Figure 6 shows the streamlines of the CFD domain inside the TG furnace. The gas flow originates from 

the bottom of the crucible, forms a toroidal vortex and then forms a plum that flows along the crucible axis 
in the vertical direction, reaching the top. The two vortex rings inside the crucible enhance the heat transfer 
with the sample and facilitate the removal of the gaseous CO2 that is produced by the particles during the 
decarbonation. 
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Fig. 6. Streamlines of the CFD domain. 
 

Figures 7 to 9 show the CO2 mass fraction in the CFD domain at three different times: when the 
instantaneous temperature activates decarbonation, at the time when the conversion rate reaches a maximum 
and when the reaction is completed. CO2 mass fraction inside the sample reaches a maximum at 7600 s, 
then, when reaction is completed, CO2 mass fraction decreases because of the continuous flow of N2 
coming from the bottom of the pipe: therefore, N2 removes CO2 from the crucible. 
 

 
 
Fig. 7. CO2 mass fraction at t=7000 s. 
 

 
 
Fig. 8. CO2 mass fraction at t=7600 s. 
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Fig. 9. CO2 mass fraction at t=8000 s. 
 

As a consequence of the temperature distribution, decarbonation starts earlier in the particles at the 
bottom of the sample, as it can be noted in Fig. 10. The early reaction on these particles is evident in Fig. 11 
and Fig. 12, where CaCO3 and CaO masses for each particle inside the sample while reaction is progressing 
are reported. 

 
 
Fig. 10. Temperature distribution of the sample at t=9000 s. 
 

 
 
Fig. 11. CaCO3 mass for each particle of the sample at t=7600 s. 
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Fig. 12. CaO mass for each particle of the sample at t=7600 s. 
 

Previous results proved XDEM capability of providing a detailed and accurate representation of the 
whole phenomena involved during a TG analysis. The combined Eulerian-Lagrangian approach joins the 
capability of providing an exhaustive representation of the field variables of the gas domain with the 
possibility of tracking every single particle overt time. 

The lumped model was then tested using such new input parameters: ms was adjusted according to the 
new mass of the sample, hr was updated to the new heating rate, whilst the A and h2 coefficients were kept 
fixed to the values obtained by the optimization step. Figures 13 and 14 report a comparison between 
estimates of sample mean temperature and mass loss provided by XDEM and the lumped model. 
 

 
 
Fig. 13. Estimations from XDEM and the lumped model for the mean temperature of the sample during 
the TG analysis. 
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Fig. 14. Estimations from XDEM and the lumped model for the weight loss of the sample during the TG 
analysis. 
 
An average error in the order of 1% can be noted between the two sets of predictions. 
 

5. Conclusions 
 

This paper shows the capability of the XDEM framework to provide realistic and reliable predictions of 
thermal and chemical phenomena taking place in processes that involve both a gas phase and materials in 
powder state. 

Furthermore, it demonstrates how extremely complex and time-consuming CFD-DEM models could be 
well exploited to fine tune simplified models aiming at providing accurate solutions in drastically reduced 
computational times.  

Indeed, the CaCO3 decarbonation process described by Georgieva can be well approximated by the 
lumped model developed, once the model has run into a tuning process involving XDEM. The genetic 
algorithm-based multi-objective optimization step resulted to be a good actor for performing such tuning 
operation.  

The final accuracy of the lumped model, 1% with respect to the CFD-DEM model, shows the potentials 
of such approach whenever a direct tuning operation is not possible because of the impossibility of getting 
reliable data to work on (e.g. impossibility of direct measurements, high uncertainty associated to literature 
data, etc.). 
 

6. Nomenclature 
 
XDEM framework: 
 

Symbols 

 Mass density 

M Molar mass 

 Reaction rate 

 Porosity (emissivity when specified) 

r Radius 
v Velocity 
D Diffusion coefficient 
p Pressure 

 Viscosity 

cp Specific heat 
T Temperature 

 Thermal conductivity 
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H Enthalpy 
A Surface area 
Ac Contact area 

 Stefan-Boltzmann constant 

k Reaction constant 
C Molar concentration 

Subscripts 
p Particle 
g Gas phase inside the particles 
f Gas of the CFD domain 

 
Lumped model: 
 

Tw Temperature of the crucible 
Ts Temperature of the sample 
Tg Temperature of the gas phase 
C Weight fraction of CaCO3 
h1 Heat exchange coefficient between gas and crucible 
h2 Heat exchange coefficient between sample and crucible 
cpw Specific heat of the crucible 
cps Specific heat of the sample 
mw Mass of the crucible 
ms Mass of the sample 
Ac External area of the crucible 
Ab Bottom area of the crucible 

σ Stefan-Boltzmann constant 

ε Emissivity of the crucible 
k Rate constant of the reaction of decarbonation 
H Enthalpy of the reaction of decarbonation 
A Pre-exponential factor 
E Activation energy 
R Gas constant 
hr Heating Rate of the experiment 
t Time base 
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