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Abstract. A number of buildings were damaged by the 2011 Great East Japan tsunami in 
the Tohoku area. The research objective is to determine the significant predictor variables 
of the level of building damage. This paper used detailed data on damaged buildings in 
Kesennuma City, Japan, collected by the Ministry of Land, Infrastructure, Transport and 
Tourism (MLIT). The tested explanatory parameters included the inundation depth, 
number of floors, volume of the building, debris flow, structural material, and function of 
the building. Through multinomial logistic regression, the results found that the number of 
floors was significantly associated with the damage level; the inundation depth, structural 
material (reinforced concrete and masonry), and function of the building (commercial 
facility, transportation/storage facility, and public facility) were partially associated with the 
damage level. This study can contribute to academic research by assessing the contribution 
of different variables to observed damage data by applying statistical analysis, as well as the 
practical contribution of providing an examination of the predominant factors driving 
tsunami damage to buildings. 
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1. Introduction 
 
The 2011 Great East Japan Tsunami created extensive destruction of more than 400,000 buildings in the 
Tohoku area of Japan [1]. Many parameters were proposed to influence the damage level of buildings from 
tsunamis, identified by various methods such as the fragility curve and weighed scores, among others. This 
study was conducted with the purpose of examining the significant factors that appear to correlate with 
tsunami damage using a statistical method with the detailed building damage data of Kesennuma City, 
Miyagi Prefecture, Japan. The tested explanatory parameters in this study included the inundation depth, 
number of floors, volume of the building, debris flow, structural material, and function of the building. The 
research hypothesis is these explanatory parameters can influence the level of building damage. 

In Section 2, a literature review on tsunami damage research is presented. Section 3 describes our 
research design and methodology. Section 4 presents the data analysis and results of this study. Finally, the 
findings are discussed and concluded in Section 5. 
 
2. Literature Review 
 
Since the 1990s, Shuto [2] considered the relationship between a range of tsunami inundation depths and 
building damage using historical tsunami information. One of his examples shows that if the tsunami 
inundation depth is greater than 2 m, wooden houses may collapse, while reinforced concrete buildings may 
collapse if the tsunami inundation depth is greater than 8 m [2]. Subsequent studies confirmed such results, 
such as those by Ruangrassamee et al. [3] and Reese et al. [4]. After the study by Shuto [2], damage criteria 
for each structural material against a range of tsunami inundation depths were investigated further [5]. A 
summary of research related to building damage criteria on structural and inundation depth and a summary 
of research related to building damage criteria on coastal topography and inundation depth are available in 
[6]. 

Based on our review focusing on building damage research from tsunamis, this section describes a 
study on the relationship between tsunami inundation depth with a damage level so-called fragility curve 
study (Sub-section 2.1), vulnerability of buildings as estimated by the Papathoma tsunami vulnerability 
assessment method (Sub-section 2.2), and advanced statistical analysis (Sub-section 2.3). 
 
2.1. Fragility Curve Research 
 
“Tsunami fragility” was presented as a new measure for estimating tsunami damage to buildings by 
Koshimura et al. [7]. Some studies proposed fragility curves for measuring structural destruction from 
tsunamis for many events such as the 1993 Ohushiri Tsunami in Japan [8-10], the 2004 Indian Ocean 
Tsunami [11-13], the 2009 American Samoa Tsunami [14], the 2010 Chilean Tsunami [15], and the 2011 
Great East Japan Tsunami [16, 17, 18]. 
 
2.2. Vulnerability of Buildings (Papathoma Tsunami Vulnerability Assessment Method) 
 
The Papathoma tsunami vulnerability assessment method (PTVA) was developed by Papathoma et al. [19]. 
Based on the importance of characteristics of buildings identified by previous field surveys of tsunami 
events and calculations using a multi-criteria evaluation method, the weight factors for various criteria 
according to their relative importance, in order from high to low, are as follows: (1) “Building material”, (2) 
“Row”, (3) “Surrounding”, (4) “Condition of ground floor”, (5) “Number of floors”, (6) “Sea defense”, and 
(7) “Natural environment [19]. Previous studies also demonstrates the importance of building physical 
parameters and their surroundings in analyzing building damage by tsunamis [20].  
 
2.3. Advanced Statistical Analysis on Building Damage 
 
The new research perspectives on building damage analysis involve applying statistical analysis to examine 
the influential factors. Leelawat et al. [6] and Charvet et al. [21] applied ordinal regression to analyze the 
influential parameters influencing the damage level of buildings affected by the 2011 Great East Japan 
Tsunami. Their study area is Ishinomai City in Japan. The damaged buildings in Sri Lanka from the 2004 
Indian Ocean Tsunami were also analyzed by multinomial logistic regression [22].  
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More information about the tsunami building damage is available at [23]. 
 
3. Research Design and Methodology 
 
3.1. Study Area 
 
Kesennuma City is located in the far northeast corner of Miyagi Prefecture, Japan. A pin in Figure 1 
indicates the location of Kesennuma City. The right hand side of the city is Kesennuma Bay. The highest 
elevation of 711.9 m is located in the Motoyoshi District, while the lowest is at sea level. Kesennuma City is 
our study area. 

According to the Ministry of Land, Infrastructure, Tourism and Transport (MLIT) surveys, 251,301 
buildings were surveyed by MLIT after the 2011 Great East Japan Earthquake and Tsunami. Among them, 
19,815 buildings (7.89%) were in Kesennuma City. Figure 2 shows an example of the damaged buildings in 
Kesennuma City. 
 

 

 
 

Fig. 1. Kesennuma City, Japan [24]. 
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Fig. 2. Kesennuma City, Japan taken during a joint survey after the 2011 Great East Japan Earthquake and 
Tsunami. 

 
3.2. Methodology 
 
Multinomial logistic regression is an extension of binary logistic regression used for multiple dependent 
categorical outcomes [25-26]. The concept involves comparing the probability between the focus group and 
the reference group [25]. 

Based on previous studies and the current available data, the assumed predictor parameters consist of 
(1) the inundation depth [2-3,6-7,17,27-29]; (2) the number of floors [19]; (3) the building volume; (4) the 
structural material [6,17-20]; (5) the function of the building [6,17-18]; and (6) the debris impact to the 
building [21]; the dependent variable is the damage level. The hypothesis is that these predictor parameters 
can influence the damage level. 

According to Japan’s Ministry of Land, Infrastructure, Transport and Tourism (MLIT) classification of 
damage, there are six levels of damage degree: DS1 “minor damage”, DS2 “moderate damage”, DS3 “major 
damage”, DS4 “complete damage”, DS5 “collapsed”, and DS6 “washed away”. Table 1 provides more 
details on each damage level. 

This paper uses the metric system (e.g., m for the inundation depth, m3 for the volume of a building). 
Following previous studies [6,18], the structural material has been categorized into four groups: (1) Wood, 
(2) Reinforced concrete, (3) Steel, and (4) Masonry. Table 2 provides the definition of the function of the 
building. Based on MLIT’s classification system, the buildings are categorized into six groups (similar to 
[18]): (1) Residential house, (2) Shared accommodation, (3) Commercial facility, (4) Transportation/storage 
facility, (5) Public facility, and (6) Agriculture-forestry-aquaculture facility. The debris flow was considered 
by assuming an area within a radius of 10 m around each washed-away building. 

The analysis was performed using IBM SPSS Version 19.0. The method used throughout this study was 
multinomial logistic regression, for a multi-categorical dependent outcome [25]. Instead of applying the 
assigned weight scores or linear regression calculation as many previous studies have, this study applied the 
multi-variable statistical approach to the tsunami vulnerability research.  
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Table 1. Damage levels, classification descriptions, and conditions of buildings categorized by MLIT. 
 

Damage level and 
Classification Description Condition 

No damage There is no damage. The building can be used immediately. 

DS1 Minor damage 
There is no significant structural 
or non-structural damage, 
possibly only minor flooding. 

The building can be used immediately 
after minor floor and wall clean up 

DS2 Moderate 
damage 

There is slight damage to some 
walls but no damage in 
columns. 

The building can be used after 
moderate reparation. 

DS3 Major damage 
There is heavy damage to 
several walls and some columns.

The building can be used after major 
reparations. 

DS4 Complete 
damage 

There is heavy damage to 
several walls and some columns.

The building can be used after 
complete reparation and retrofitting. 

DS5 Collapsed 

There is destructive damage to 
walls (i.e., more than half of wall 
density) and several columns 
(i.e., bent or destroyed) 

The building has lost its functionality 
(i.e., system collapse). It is non-
reparable or will consume a great cost 
for retrofitting. 

DS6 Washed away 
The building was washed away. 
Only the foundation remains, 
totally overturned 

The building is non-repairable/requires 
total reconstruction. 

 
 

Table 2. Function of the building based on MLIT’s classifyion system. 
 

Building Type  Group Definition 
11 Residential house Residential house 

12-19 Shared accommodation 
Shared accommodation, 
accommodation with shop or factory 
facility included 

21-29 Commercial facility Commercial facility or 
operation/service facility 

31-39 Transportation/storage facility Transportation/storage 
41-49 Public facility Multi-purpose or official workplace 

51-59 Agriculture-forestry-aquaculture 
facility 

Agriculture, forestry, or aquaculture 
facility 

 
4. Data Analysis and Results 
 
4.1. Descriptive Statistics 
 
The data used in this study were collected by MLIT. In total, there are 19,815 buildings. After inspection of 
the data, 9,066 buildings were determined to have complete data for the analysis. 

Table 3 shows the descriptive statistics of the damage level. More than 50% of the buildings (N = 
4,785; 52.8%) were washed away. Table 4 describes the descriptive statistics of the function of the buildings. 
The largest group is residential houses (N = 5,956; 65.7%), while the smallest group is agriculture, forest, 
and aquaculture facilities (N = 18; 0.2%).  
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Table 3. Descriptive statistics of the damage level. 
 

Damage level N Percent 
Cumulative 

percent 
No damage 0 0.0 0.0
DS1 Minor damage 342 3.8 3.8
DS2 Moderate damage 312 3.4 7.2
DS3 Major damage 959 10.6 17.8
DS4 Complete damage 366 4.0 21.8
DS5 Collapsed 2,302 25.4 47.2
DS6 Washed away 4,785 52.8 100.0
Total 9,066 100.0

 
Table 4. Descriptive statistics of the function of buildings. 
 

Function of building N Percent 
Residential house 5,956 65.7 
Shared accommodation 513 5.7 
Commercial facility 1,826 20.1 
Transportation/storage facility 556 6.1 
Public facility 197 2.2 
Agriculture, forestry, aquaculture facility 18 0.2 
Total 9,066 100.0 

 
Descriptive statistics of structural materials are shown in Table 5. Wooden buildings form the largest 

group (N = 7,530; 83.1%), while the smallest group is steel (N = 10; 0.1%). 
 
Table 5. Descriptive statistics of structural materials. 
 

Structural material N Percent 
Reinforced concrete 180 2.0 
Steel 10 0.1 
Masonry 1,346 5.8 
Wood 7,530 83.1 
Total 9,066 100.0 

 
Debris flow parameters were assigned according to the 10-m area around the washed-away buildings. 

Table 6 provides the descriptive statistics of the debris flow. Approximately 65.4% of the buildings were 
within the debris flow area. Table 7 shows the descriptive statistics of inundation depth, number of floors, 
and volume of the building. 
 
Table 6. Descriptive statistics of debris flow. 
 

Debris flow N Percent 
Within 10 m area 5,925 65.4 
Outside 10 m area 3,141 34.6 
Total 9,066 100.0 
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Table 7. Descriptive statistics of inundation depth, number of floors, and volume of the building 
 

Item N Min Max Mean SD 
Inundation depth 
(m) 

9,066 1 6 1.70 0.590 

Number of floors 
(floor) 

9,066 0.0 15.3 4.670 2.7832 

Volume of the 
building (m3) 

9,066 14 58,427 1,329.74 2,514.117 

 
4.2. Testing for Correlated Predictors 
 
It is necessary to check that all predictor variables are independent in order to prevent the multicollinearity 
problem, which can strongly affect the coefficient estimates of the regression model [30-32]. A Pearson 
product-moment correlation coefficient was calculated to assess the relationship between each predictor 
variable [33-34]. As shown in Table 8, based on the criteria of 0.6 [33], the correlation coefficient value 
showed a moderately strong relationship only between the inundation depth and the debris impact. In 
addition to the 10-m debris flow area, we also did a further analysis for a 50-m area of debris flow, but the 
correlation coefficient value still showed a moderately strong relationship with the inundation depth. Thus, 
the debris influence was eliminated from the regression analysis.  
 
Table 8. Correlation analysis results. 
 

 
Number 
of floors 

Inundation 
depth 

Volume 
of the 

building 

Debris 
impact 
(10 m) 

Function 
of the 

building 

Material 
of the 

building 
Number of floors: 
  Pearson corr. 1      

Inundation depth: 
  Pearson corr. 

-0.072** 1     

Volume of the building: 
  Pearson corr. 

0.255** 0.007 1    

Debris impact (10 m): 
  Pearson corr.  -0.070** 0.684** -0.013 1   

Function of the 
building: 
  Pearson corr. 

-0.124** 0.046** -0.266** 0.045** 1  

Material of the building: 
  Pearson corr. 

-0.138** 0.009 -0.331** 0.045** 0.320** 1 

 Note. *Significant at level p < 0.05; **significant at level p < 0.01; ***significant at level p < 0.001 
 
4.3. Multinomial Logistic Regression Analysis 
 
DS1 was set as the reference group because the research interest would focus on at least the damage to 
non-structural members. We also set wood as the reference group for the structural material and residential 
house for the function of the building because they are the largest group in each predictor. 

The analysis tested for the goodness of fit [25] and found that this method (multinomial logistic 
regression) appears to provide the best fit with these data compared with other regression techniques. As 
shown in Table 9, when setting DS1 as the reference group, the primary results show that significant 
explanatory variables include the number of floors (all levels), the inundation depth (except DS2), the 
building volume (only DS4), and the building function (commercial facility for DS2, DS4, DS6; 
transportation/storage facility and public facility for DS4).  
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Table 9. Explanatory variables associated with the damage level. 
 

Item 
Parameter estimate 

DS2 DS3 DS4 DS5 DS6 
Inundation depth 0.037 0.124*** 0.633*** 0.418*** 0.790*** 
Number of floors 0.313* 0.388*** 1.819*** 0.674*** 0.415*** 
Volume of the building 0.000 0.000 0.000*** 0.000 0.000 
Function (shared 
accommodation) -0.398 -0.068 -0.441 0.093 -0.004 

Function (commercial facility) 0.793*** 0.264 1.187*** 0.267 0.347* 
Function (transportation/ 
storage facility) 

-0.187 -0.110 1.069** 0.514 0.222 

Function (public facility) 0.398 0.658 3.199*** 0.783 0.637 
Function (agriculture facility) 0.002 -0.386 -0.353 0.571 -0.471 
Material (reinforces concrete) 0.667 1.215 5.068*** 2.325 -1.307 
Material (steel) -0.402 -0.388 10.482 65.195 -0.891 
Material (masonry) 0.291 0.206 2.224*** -0.118 -0.398* 

 Note. *Significant at level p < 0.05; **significant at level p < 0.01; ***significant at level p < 0.001 
 

In summary, because there are six groups of damage levels, there are 5 equations for the probability 
(i.e., number of equations = number of dependent groups - 1). The general models according to the 
supported significant parameters estimate (i.e., coefficient) (see Table 9) are shown in Eq. (1), Eq. (2), Eq. 
(3), Eq. (4), and Eq. (5): 

 
ln[P(DS6)/P(DS1)] = -1.656 + 0.790xinundation_depth + 0.415xnumber_floors + 0.347xfunction_commercia

l – 0.398xmaterial_masonry                                                                                                         --------- (1) 
 

ln[P(DS5)/P(DS1)] = -1.187 + 0.418xinundation_depth + 0.674xnumber_floors                         --------- (2) 
 

ln[P(DS4)/P(DS1)] = -7.098 + 0.633xinundation_depth + 1.819xnumber_floors + 1.187xfunction_sharedacco

mmodation + 1.069xfunction_transportation +3.199xfunction_public +5.068xmaterial_reinforcedconcrete + 2.224xma

terial_masonry                                                                                                                              --------- (3) 
 

ln[P(DS3)/P(DS1)] = -0.346 +0.124xinundation_depth + 0.388xnumber_floors                        --------- (4) 
 

ln[P(DS2)/P(DS1)] = -1.025 + 0.313xnumber_floors + 0.793xfunction_commercial                     --------- (5) 
 
where P(DSy) is the probability of damage level y; xfunction_sharedaccommodation, xfunction_commercial, xfunction_transportation, xfunction_public, 
xfunction_agriculture, xmaterial_reinforcedconcrete, xmaterial_steel, and xmaterial_masonry are the predictor variables that have binary values; 
and xinundation_depth, and xnumber_floors are the continuous predictor variables for the scale of inundation depth and 
number of floors, respectively. 

Based on Norusis [35], the three commonly used Pseudo-R2 formulas (Cox and Snell [36], Nagelkerke 
[37], and McFadden [38]) were reported to investigate the amount of variation in output that can be 
explained by the predictor variables. The results are as follows: R2Cox and Snell = 0.444, R2Nagelkerke = 0.480, and 
R2McFadden = 0.227.  

 
4.4. Accuracy of the general models 

 
The analysis accuracy was checked using cross-tabulation with the estimated damage (see Table 10). In total, 
the classification showed that the model could estimate correctly 62.5% on average with the highest 
accuracy of 94.7% for DS6. 
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Table 10. Cross-tabulation analysis result. 
 

Actual damage level 
 Estimated damage level 

%Correct1 2 3 4 5 6 
1 0 0 297 12 25 8 0.0
2 0 0 230 30 46 6 0.0
3 0 0 464 92 314 89 48.4
4 0 0 3 260 8 95 71.0
5 1 0 300 205 407 1,389 17.7
6 0 0 40 157 55 4,533 94.7
%Overall 0 0 14.7 8.3 9.4 67.5 62.5

 
5. Discussion and Conclusion 
 
This empirical study demonstrated an analysis to investigate the most significant influential parameters in 
terms of damage levels of buildings. Multinomial logistic regression was applied to examine all available 
predictor variables to the damage level. The results found that the number of floors was significantly 
associated with the damage level. The inundation depth, structural material (reinforced concrete and 
masonry), and function of the building (commercial facility, transportation/storage facility, and public 
facility) were partially associated with the damage level. 

In line with many previous studies [2-3,6-7,17,27-29], our findings confirm that the inundation depth 
should be considered as one of the parameters associated with building damage as well as the number of 
floors.  Because the results show that the building function and building material are partially supported in 
this study, there is evidence to support a deeper study of this issue. 

In comparison with [22], which applied a similar method to the case of damaged buildings from the 
2004 Indian Ocean tsunami in Sri Lanka, we found that both studies show that inundation depth is one of 
the significant influential parameters. As for the structural material, Leelawat et al. [22] used a different 
classification, and thus, it is difficult to compare their study with the current one. In comparison with [6], 
which is a study on building damage in Ishinomaki City, another city in Miyagi Prefecture, both studies 
found that inundation depth and number of floors are significantly associated with the damage level. In 
addition, both studies also found a significant association between damage level and reinforced concrete for 
structural material; damage level and commercial and transportation facilities for the function of the 
building. However, their results are different for steel building materials (significant association in [6]), a 
shared accommodation building function (significant association in [6]), and a public facility building 
function (not significant association in [6]). 

It is important to understand the limitations of this study. Because the research analyzed primarily the 
data from one city, some characteristic settings may not be generalized to other areas. Moreover, this study 
applied only the available parameters: some other variables might influence the damage levels. If a future 
study can investigate those variables, the accuracy of estimations is likely to be improved. 
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