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Abstract. Chemical transformations typically occur according to multiphase schemes. 
Changes in the concentrations of the starting materials and intermediates with time are not 
always described with increasing or decreasing functions. A detailed study of a complex 
process kinetics showed that at the presence of feedback far from equilibrium there may 
occur vibrational modes - periodic increase or decrease in the concentration of one of the 
components in time. In a numerical study of oscillating reactions there appears a problem 
in solving a rigid system of typical differential equations. The purpose of this study is to 
develop an algorithm and a program to solve the direct kinetic problem and to investigate 
multicomponent chemical systems with complex nonlinear dynamics. 
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1. Introduction 
 
Among the numerous oscillating chemical and biochemical reactions the most famous class of reactions is 
the class first discovered by the Russian scientists B.P. Belousov and A.M. Zhabotinsky [1]. Belousov-
Zhabotinsky’s reaction has been studied in hundreds of world laboratories in vessels of various shapes, in a 
flow, in porous environments, etc. 

The mechanism of Belousov-Zhabotinsky’s reaction has more than 80 phases. Due to this fact the 
investigation of the reactions patterns, solutions of the direct and inverse problems as well as the 
optimization problems are often impossible. In paper [2] there is proposed a simple and abstract model of 
Belousov-Zhabotinsky’s reaction, which turned out to preserve the most important features of this reaction. 
Such a simplified scheme has been called Oregonator [2]. 

Model Oregonator describing the behavior of Belousov-Zhabotinsky reaction, found its use not only in 
chemistry but also in other sciences, such as medicine, geology, and others. For example, the wave 
structures of the oscillations of the heart muscle have a similar kind of oscillations. Therefore, the study of 
the model Oregonator and a study of the Belousov-Zhabotinsky reaction is relevant at the moment. 
 

2. Data Analyses 
 
We consider several variants of models of Belousov-Zhabotinsky’s oscillatory reaction. We assume that the 
reaction is carried out in a closed vessel. Then the reaction scheme can be presented as follows [3]:  
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where A  and B  – raw reactants, P  and Q  – products, X  , Y , Z  – intermediates: 
2HBrO  , Br  and 

( )Ce IV  correspondingly. Differential equations describing the dynamics of Belousov-Zhabotinsky’s 

reaction (according to a simplified Oregonator scheme) has the following form [4]: 
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where 
1 1.34k  mole/s, 9

2 1.6 10k    mole/s, 3

3 8 10k    mole/s, 7

4 4 10k    mole/s, 0.06A  mole, 

0.06B   mole. Stoichiometric factor f  and rate constant 
5k  are parameters related to the consumption 

of reactants which can be varied [5]. 
System (2) is characterized by high rigidness coefficient, calculated according to the formula [6] 
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where 
i  – eigenvalues of the Jacobi matrix of the system of differential equations along its solutions and 

Re( ) 0i   . The rigidness coefficient ( )t  for system (2) exceeds 61.4 10  [7]. 

Thus, for direct kinetic problem Eq. (2) explicit schemes for solving typical differential equations 
become inapplicable [8]. Therefore, the only possible way to solve problem Eq. (2) is to use implicit 
methods. 

Let’s consider another type of an Oregonator model which takes into account the reaction in an 
isothermal reactor of a constant volume with metabolism (an open system, ideal mixing reactor). A kinetic 
scheme with a complex limit cycle will consist of six phases [9]: 
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This reaction involves 7 substances: 3A BrO  , ( )C M n  – ion of a metal catalyst, P HOBr , 

2W BrO , 
2X HBrO  , Y Br  , ( 1)Z M n   – an oxidized form of the ion of a metal catalyst. Let’s 

mark the concentration of the reagents in the following way: 1 3[ ]c BrO  , 2 [ ]c Br  , 
3 [ ( )]c M n  , 

4 2[ ]c HBrO  , 
5 [ ]c HOBr , 

6 2[ ]c BrO , 
7 [ ( 1)]c M n   . Since reaction (4) takes place in a constant 

volume isothermal reactor with metabolism, then the corresponding system of differential equations 
consists of equations of the form: 
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where /   is the time of the mixture in the reactor,   – reactor volume,   – volumetric flow rate of 

the mixture through the reactor, , ( 1..6)iv i   are given by:  
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Kinetic constants take the following values: 
1 0.084k   mole/s, 

3

3 2 10k    mole/s, 
3

3 2 10k    

mole/s,  mole/s, 5

4 1.3 10k    mole/s, 4

5 4 10k    mole/s, 
6 0.65k   mole/s, 4

1 10k   mole/s, 
5

2 5 10k 

    mole/s, 
7

3 2 10k    mole/s, 
7

4 2.4 10k    mole/s. Initial conditions are given in the form 

0(0)с с . 

After checking the rigidness of the system of differential equations (5), we obtain that 
5( ) 4.5 10t    

[10]. 
Thus, for a numerical solution of Eq. (2) and Eq. (5) it is necessary to develop an algorithm for solving 

rigid problems with a wide range of sustainability. 
Rosenbrock schemes - a family of methods for solving stiff problems, based on the diagonal implicit 

methods of Runge-Kutta. Some schemes of this family have increased reliability. In terms of stability, they 
do not concede implicit methods, but transition to the next time layer is obtained by the solution of system 
of linear equations with a finite number of steps. Initially, methods were proposed in 1963 by Rosenbrok to 
circumvent the problem of rigidness. 

For a numerical study of Oregonator’s models there has been chosen a two-phase Rosenbrock’s 
method with complex coefficients. The realization of this method is difficult and requires a large amount of 
computation. However, this disadvantage is offset by a high resistance, which is an important quality when 
choosing a method for solving rigid and superrigid systems of differential equations [11, 12]. The schemes 
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of Rosenbrock’s method for a transition to a new time layer require some solutions of a linear system of 
equations with a well-conditioned matrix which avoids iterations. 

The use of complex coefficients is a non-trivial process to obtain the schemes with better accuracy and 
stability compared to the scheme with real coefficients. The number of parameters of the schemes is 
actually doubled. 

Rosenbrock’s methods can take form [13] in the simplest case:  

 
1 1 1 2 2Re( )n ny y b g b g    , (6) 

where 
1g  and 

2g  are obtained from the relevant systems of linear equations: 
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Here 
ny  – direct numerical solution of the kinetic problem in a time moment t  , h  – time step, E  – 

identity matrix, yf  – Jacobi matrix of system (2) and system (5), 
1  , 

2 , 
1b , 

2b , a  and d  – complex 

parameters defining the properties of the scheme. In [13], the following values of the parameters of the 
method are given: 
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With appropriate parameters Rosenbrock’s scheme is L1-stable [14, 15]. 
The complexity of the algorithm is in the work with complex numbers and matrices of complex 

numbers. To find vectors 
1g  and 

2g  we have to solve a system of linear algebraic equations with complex 

numbers. We have to move from complex numbers to real numbers when realizing the algorithm on a 

computer. To do this, we introduce the notation for finding vector 
1g  (vector 

2g  is similar): 

1[ ( )]y nА E h f y   – complex matrix, ( )nB hf y  – real vector. 

First equation of system (7) can be represented in a matrix form: 

 
1 .Аg B  (8) 

Since matrix A  and vector 
1g  contain complex numbers, then Eq. (8) can be represented as follows: 

1 1( )( ) ( 0),re im re im reА iA g ig B i     

where 
reА  , 

1reg  – real part of complex matrix A  and vector 
1g  , 

imA  , 
1img  – corresponding complex 

parts of matrix A  and vector 
1g , i  – an imaginary unit. 

To find vector 
1g  it is necessary to solve a system of equations 
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Its solution can be written in the following way: 
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And we can obtain an explicit formula for the transition to the next time layer by substituting the 

parameters 1g  and 
2g  in the general equation of the method (6). 

 

3. Discussion 
 

The results of the integration of the system (2) with initial conditions 
11

0[ ] 5 10X    mole, 
7

0[ ] 3 10Y    

mole, 
8

0[ ] 5 10Z    mole, 1f   , 
5 0.5k   are presented in Figs. 1–3 [16]. The integration step is 
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310h  . The system of differential equations (2) is characterized by periodic changes of concentrations 

with period 57.58T c . 
 

 
Fig. 1. Oscillating values of X reactant concentrations in reaction (2). 
 

 
Fig. 2. Oscillating values of Y reactant concentrations in reaction (2). 
 

 
Fig. 3. Oscillating values of Z reactant concentrations in reaction (2). 
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The results of the integration of the system (5) with initial conditions 
1 0.1387с   mole, 

7

2 1.534 10с    mole, 4

3 1.176 10с   mole, 8

4 3.165 10с    mole, 4

5 1.956 10с    mole, 
7

6 5.814 10с    mole, 6

7 6.31 10с    mole are given in Figs. 4–10 [17, 18]. The integration step is 
310 .h   

According to Figs. 4–10 we can see that kinetic curve of reagent 
2c , 

3c ,
4c , 

6c ,
7c  is characterized by a 

complex periodic oscillation mode and kinetic curve of reagent 
5с  by a quasisinusoidal oscillation [19, 20]. 

 

 
Fig. 4. Fluctuating values of 

1c  reagent concentration in reaction (5). 

 

 
Fig. 5. Fluctuating values of 

2c  reagent concentration in reaction (5). 
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Fig. 6  Fluctuating values of 

3c  reagent concentration in reaction (5). 

 

 
Fig. 7. Fluctuating values of 

4c  reagent concentration in reaction (5). 

 

 
Fig. 8. Fluctuating values of 

5с  reagent concentration in reaction (5). 
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Fig. 9. Fluctuating values of 

6c  reagent concentration in reaction (5). 

 

 
Fig. 10. Fluctuating values of 

7c  reagent concentration in reaction (5). 

 

4. Conclusion 
 
The article gives an algorithm for solving the direct kinetic problem based on Rosenbrock’s implicit 
schemes with complex coefficients. An algorithm test has been performed on the famous Belousov-
Zhabotinsky’s reaction provided with the models taking into account the reactions in a closed and in an 
isothermal reactor of a constant volume. 

A numerical simulation of Belousov-Zhabotinsky’s reaction has showed that periodic oscillations of 

reactant concentrations with period of 57,58T c  can exist in a closed system. Simultaneously, 

fluctuations in concentrations can be represented by quasi-sinusoidal and complex periodic modes in an 
isothermal reactor. 

There has been worked out a program providing a numerical study of oscillatory reactions in Object 
Pascal in Lazarus. 
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