

Article

Effective Partitioning and Multiple RDF Indexing for
Database Triple Store

Sunitha Abburua,* and Suresh Babu Gollab

Department of Computer Applications, Adhiyamaan College of Engineering, Hosur, Tamilnadu, India
Email: adrsunithaabburu@yahoo.com (Corresponding author), bsuresh_babu_golla@yahoo.com

Abstract. The capability of semantic technology leads to adaption of semantic technology
to multiple applications of various domains. Due to vast number of applications, the size
of RDF triple store is increasing. Effective semantic query execution has become a
challenge due to the structure of RDF triple store. Effective indexing and partitioning
leads to good sematic query performance against RDF triple store. The current research
work has focused on various indexing techniques and proposed a predicate centric
partitioning and multiple RDF indexing method for database triple store. A detailed
analysis process is been executed to measure and compare the query performance. The
current method is evaluated using standard benchmark and real datasets with various
indexing techniques. Later the methodology is applied to R&D project management
dataset. A set of twenty seven queries has been derived by considering various user
requirements that cover most of the SPARQL constructs. The method is implemented
and a detailed evaluation has been successfully carried out. The query time is evaluated on
R&D project management dataset. The test results indicate that the proposed method
provides considerable improvement in overall query performance.

Keywords: Ontology, RDF, partition, indexing, SPARQL query.

ENGINEERING JOURNAL Volume 19 Issue 5
Received 24 October 2014
Accepted 23 February 2015
Published 31 October 2015
Online at http://www.engj.org/
DOI:10.4186/ej.2015.19.5.139

DOI:10.4186/ej.2015.19.5.139

140 ENGINEERING JOURNAL Volume 19 Issue 5, ISSN 0125-8281 (http://www.engj.org/)

1. Introduction

Semantic technology provides various tools and techniques that supports:

 Automation, integration

 Common framework and understanding

 Reusability and sharability across application, enterprise and community boundaries and

 Machine processable formats
Ontology is a formal, explicit specification of a shared conceptualization [1]. Ontology plays a vital role

in Semantic Web (SW). SW is the vision of Tim Berners-Lee. The objective is to represent the knowledge in
machine understandable format [2]. Ontology provides domain vocabulary, domain knowledge, common
understanding, data sharability, information interoperability, reusability and supports semantic information
retrieval. The major elements of ontology are concepts, properties that relates concepts and the instances of
the concepts [3].

Ontology language is a formal language that encodes domain knowledge and supports reasoning.
Ontology languages are classified by structure or syntax. The most common and popularly famous language
is markup ontology language, which uses a markup scheme to encode knowledge. Among all markup
ontology languages Resource Description Framework (RDF) [4], Resource Description Framework and
Schema (RDFS) [5] and Web Ontology Language (OWL) [6] are most popular [7] and recommended by
World Wide Web Consortium (W3C). RDF has wide acceptance due to its flexibility. RDF represents data
in homogeneous and machine understandable format. This enable application interoperability and semantic
retrieval.

RDFS facilitates description of ontology elements with the help of knowledge representation data
models in the form of classes/concepts and properties known as TBox. RDF is a standard data model that
interchange and merge instance data, known as ABox. TBox is associated with classes/concepts and ABox
is associated with instances of the classes. RDF data model represents resources in the form of subject-
predicate-object expressions known as RDF triple. A triple describes a resource in the form of (subject,
predicate, and object) or (subject, property, value). Subject-predicate-object databases are known as triple
stores. SPARQL is a formal RDF query language [8]. It is used retrieve and manipulate triples from RDF
triple store.

SPARQL query language is used to execute semantic queries on RDF triple store. SPARQL to SQL
rewriters are used to execute semantic queries on classical Relational Database Management Systems
(RDBMS). Semantic queries on relational data bases can be executed by mapping relational data base
constructs with the ontology elements and SPARQL to SQL rewriters such as D2R server [9] and Vituoso
RDF view [10]. Christian et al. [11] evaluated and compared the performance of RDF stores and SPARQL
to SQL rewriters. The evaluation proves that the fastest SPARQL to SQL rewriters outperforms fastest
native RDF stores with increasing dataset size. However, there are no exact counter parts for several
SPARQL query constructs in SQL.

RDF triple store can be stored in file formats, native triple store (eg. AllegroGraph [12], Jena TDB [13],
HStar [14]) or in relational data bases in triple format (eg. Jena SDB [15], Oracle semantic store [16],
virtuoso RDF store [17]). RDF store uses file system to store triples and SPARQL is a formal query
language to retrieve and manipulate RDF triples. Database RDF stores use relational or object relational
databases as the backend store [18] to store RDF triples and SPARQL as a formal query language to
retrieve and manipulate triples with the support of SPARQL query engine. Native triple store is straight
forward than triples stored on relational data bases. However database management systems have many
significant features such as performance, robustness, reliability and availability. Thus relational database is a
very good solution for storing and querying RDF triple [19]. Thus database triple stores are the effective
method to store RDF triples. Due to the structure and flexibility of RDF and adoption of semantic
technologies by various domains, the RDF triple store size is increasing from million to billion to trillion.
The performance of the system depends upon RDF storage structure, indexing techniques, query and
reasoning capabilities. Efficient query processing is required for any effective system [20]. The current
research work focuses on query performance aspects of database triple stores.

 The current research focuses on two aspects: partitioning and indexing RDF triples to improve the
performance of the system in terms of the query processing time. Major challenges with the current RDF
indexing methods are: data redundancy, index storage cost, time complexity etc. The current research work
mainly focusses on query processing time for large and real time RDF triples stored in relational data bases.

DOI:10.4186/ej.2015.19.5.139

ENGINEERING JOURNAL Volume 19 Issue 5, ISSN 0125-8281 (http://www.engj.org/) 141

The paper presents an effective predicate based partitioning and multiple RDF indexing method. The
performance of the method is evaluated and compared with popular RDF indexing methods. The
evaluation is done using different, widely accepted benchmark and real datasets for various sizes.

The rest of the paper is organized as follows. Section 2 discusses RDF indexing methods, section 3
illustrates predicate based partitioning and multiple RDF indexing method, Section 4 provides evaluation
results and Section 5 summarizes the conclusions.

2. Discussion

There are several approaches to store and query RDF triples in relational databases. Among all the
relational database triple stores, the straightest forward and popular approach is vertical table approach [21].
Vertical table approach [22] stores the description of classes, properties and their instances in a single
universal table. The schema of this table has three columns: subject, predicate, object and represents
instance identifier, property of an instance and value of an instance, respectively. The oblivious advantages
of the approach are: simple structure, fixed number of columns, most straight forward relational method
and both data and metadata can be processed in the same way. Its major limitations are: that every query
has to search the whole database, expensive joins are required and provides less query efficiency. The query
processing time can be reduced by partitioning and indexing of RDF triples. The following are the various
RDF indexing methods proposed by various researchers.

Kolas et al., [23] enhanced the idea of indexing on each column separately by using linked list as data
structure. This approach maps each RDF resource ‘r’ to a set of three pointers {p1, p2, p3} where a
resource can be either IRI or Literal value. Pointer p1 points to the first record in which ‘r’ occurs as
subject, pointer p2 points to the first record in which ‘r’ occurs as predicate and pointer p3 points to the
first record in which ‘r’ occurs as object. Further each record in the triple table consists three points that
points to the next triples in the same table containing the same subject, predicate and object respectively.
This approach consumes less storage space, but slightly high I/O cost.

G.H.L Fletcher et al., [24] proposed an approach which is similar to Kolas’s approach called TripleT.
In this approach each RDF resource ‘r’ contains three buckets, one for all pairs of (p, o) where r appears as
subject, one for all pairs of (s, o) where r appears as predicate and one for (s, p) where r appears as object.
Each bucket can be represented as a linked list. For example in the case (r, p, o) r contains a pointer that
points to the first triple in the table where r is presented as subject. Further each triple has a pointer that
points to the next triple in which r appears as subject. Oblivious advantages of TripleT are: simple to design
and maintain. All information of a resource can be maintained in a list. However, care is needed while
building lists for resources. Multiple lists are to be processed while query contains multiple variables.

L. Ma et al., [25] proposed a solution for addressing the issues of vertical table approach. The approach
describes four different kinds of B-Tree indexing techniques on the triple table. The first kind of indexing
technique builds a separate index on each column. That is an index on subject column alone, an index on
predicate column alone and an index on object column alone. The second kind builds an index on the
combination of subject and property columns and an index on object column alone. The third kind builds
an index on combination of property and object columns. The fourth kind of indexing builds an index on
combination of all the three columns. It is observed that the first kind of indexes give better query
performance than the remaining three. The same has been considered for performance evaluation in the
current research work.

C. Weiss et al., introduced HexaStore [26] that is an efficient and scalable RDF data engine. HexaStore
has six Btree indexes, one for each possible order of triples. The triple patterns are (S, P, O), (S, O, P), (P, S,
O), (P, O, S), (O, S, P) and (O, P, S). This approach is a multiple indexing approach. It allows fast merge
joins for any pair of triple patterns and reduces query processing time. But RDF elements are redundant,
for example (S, O, P) and (O, S, P) indexes have redundant RDF elements.

T. Neumann et al., [27] describes an extensive multiple indexing approach. This enhances the idea of
six tuple indexing with nine additional indexes. The nine additional indexes are: six indexes on all six
possible binary permutations (SP, SO, PS, PO, OS, OP) and three indexes on each column of SPO triple.
The additional nine indexes are also known as projection indexes. The projection indexes map search keys
to all the triples that satisfy the search key. The projection indexes optimize query performance and reduce
intermediate joins.

HexaStore, Neumann’s RDF indexing method and L. Ma’s indexing approaches build index on
permutations of triple patterns. These have redundant RDF elements that increasing storage cost. Kolas’s

DOI:10.4186/ej.2015.19.5.139

142 ENGINEERING JOURNAL Volume 19 Issue 5, ISSN 0125-8281 (http://www.engj.org/)

and Fletcher’s indexing methods use linked list approach to build indexing over RDF triples. Handling
pointers for massive RDF stores is complex. Major limitations with the RDF indexing approaches in the
state of the art are:

 Data redundancy

 Indexing storage cost

 Placing all possible instances for an RDF query with in small scope

 Query processing time

 Improve relevance of query results

3. Approach

The current research work is a part of a Research and Development (R&D) project, financially sponsored
by DRDO (Defense Research and Development Organization, Govt. of India) the project deals with the
semantic management of R&D project management. The proposed approach is applied on R&D project
management dataset that represents R&D project knowledge base using multiple sub ontologies.

The current research work discusses a generic two step approach.

 Partitioning on predicate

 Multiple RDF Indexing (predicate centric indexing, i.e. P, PS, PO, PSO, POS)
The RDF partitioning and indexing method is applied to reduce redundancy, query processing time and

placing all possible instances for an RDF query with in small scope that supports fast retrieval.
Few advantages of using partition techniques are [28]:

 Easy and Improved manageability of large tables

 Fast query processing

 Flexible indexing

 Better optimization of storage costs

 Larger table capacity
Popular partitioning approaches are range, list and hash partitioning. The current research adopted

hash partitioning. List and range partitions are not appropriate for RDF triple store. Since no RDF element
gives any specific list or range of values and RDF elements are interchangeable in different context. That is,
a subject in an RDF triple can be an object in another RDF triple. Hash is a partition technique that
distributes triples equally among specified number of partitions based on partition column. Hash partition
is more suitable for RDF data structure. Hash partition on RDF can be done on any RDF element: subject,
predicate or object. For R&D project management, most of the user query patterns are with known
predicate. Further various benchmark and real time SPARQL queries and analysis concludes that most of
the user query patterns contain known predicate. To identify the partitioning element, user query pattern is
observed and found that, partition on predicate column gives more effective results in terms of query
processing time.

The effectiveness of the indexing techniques is evaluated and measured based on the coverage of RDF
elements and the user query patterns. SPARQL has four different forms SELECT, CONSTRUCT,
DESCRIBE and ASK [29]. All the four forms of SPARQL queries return results based on a set triple
patterns. The triple pattern set contains patterns to be matched against an RDF dataset. Various possible
SPARQL query pattern are shown in Table. 1.

Table 1. SPARQL query patterns.

Pattern Subject Predicate Object

1 :s :p :o
2 :s :p ?
3 ? :p :o
4 ? :p ?
5 :s ? :o
6 :s ? ?
7 ? ? :o
8 ? ? ?

DOI:10.4186/ej.2015.19.5.139

ENGINEERING JOURNAL Volume 19 Issue 5, ISSN 0125-8281 (http://www.engj.org/) 143

A sample SPARQL query where clause pattern, looks like: “<http://example.org/book/book1>
<http://purl.org/dc/elements/1.1/title> ?title”. Elements preceded by ? are known as variables. Variables
represents unknown values or data to be found. SPARQL query processor searches for the data bound to
the variables so that the query pattern matches for RDF data in triple store. Index on known elements or
combination of known elements of a pattern assist query processor to find data bound to variables and
improve query performance.

To improve the query performance, the current approach applies partitioning on predicate and multiple
indexing on all combinations of RDF elements that are predicate centric (P, PS, PO, PSO and POS), see
Fig. 1. The method uses five indexes P, PS, PO, PSO and POS which reduces index storage cost and covers
most of the user query patterns.

Fig. 1. Partition based multiple RDF indexing method.

Steps involved in the current partition based multiple RDF indexing are:

Step 1. Create table space
Step 2. Create table by applying hash partition on predicate element
Step 3. Load RDF data
Step 4. Create multiple indexes: P, PS, PO, PSO and POS

4. Evaluation

There are several real and benchmark datasets and respective SPARQL queries available in the literature to
evaluate RDF storage and retrieval performances. Various real and benchmark data sets along with the
benchmark generator algorithm are described in [30]. DBpedia [31] explains a real data set, BSBM and SP2
[32] which are popular and widely accepted as benchmark data sets. The current work has taken DBpedia,
BSBM and SP2 data sets to evaluate the predicate centric partitioning and multiple indexing approach.

Various performance metrics benchmarks are defined in the state of art. BSBM performance metrics
are Query Mixes per Hour (QMpH), Queries per Second (QpS) and Load Time (LT). SP2 performance
metrics are Arithmetic Mean (AM) and Geometric Mean (GM) of elapsed time of SP2 benchmark queries.
DBpedia measures Query Processing Time (QPT) of individual queries.

The current methodology is been implemented for R&D project data base. The effectiveness of the
methodology is evaluated in two ways 1. Using real and benchmark datasets. 2. R&D project management
dataset.

To evaluate the performance of the current method, various indexing techniques (L.Ma’s First index,
Hexa Store and Neumann’s RDF index) including the current approach have been applied on BSBM, SP2

S P O

RDF Triple Store

Partition 1

Indexing

OS P O

POPS POSP PSO

Partition 4

Indexing

OS P O

POPS POSP PSO

Partition 3

Indexing

OS P O

POPS POSP PSO

Partition 2

Indexing

OS P O

POPS POSP PSO

DOI:10.4186/ej.2015.19.5.139

144 ENGINEERING JOURNAL Volume 19 Issue 5, ISSN 0125-8281 (http://www.engj.org/)

and DBpedia datasets. The RDF indexing methods are implemented for different sizes of BSBM, SP2
benchmark datasets (50K, 250K, 1M, 5M) and DBpedia datasets (2L,4.5L, 15M), where L: lakhs K:
thousand and M :million triples.

Testing is done in a windows8 desktop system of memory 12GB and processor 3.4 GHz. Oracle
semantic store is used as a triple store. The evaluation report is presented below.

4.1. Observations from Performance Evaluation Test Results on Benchmark and Real Dataset

a) BSBM benchmark dataset

BSBM performance metrics are QMpH and QpS. BSBM test drive is executed with 25 warm ups and 100
runs on various RDF indexing methods. It is observed that, predicate based partitioning and indexing
method improves the overall QMpH as seen in Fig. 2.

Fig. 2. QMpH analysis of RDF indexing methods on various sizes of BSBM benchmark dataset.

Q5 and Q8 are the two queries for which the performance is almost same as other indexing approaches.
Q5 and Q6 are queries with multiple filters. This indicates that the predicate based partitioning and
indexing technique performance is same as other approaches for the queries with multiple filters. For ten
queries out of twelve, the QpS is increasing as the dataset size is increasing. The results are shown in Figs.
3–6.

Fig. 3. QpS analysis of RDF indexing methods on BSBM benchmark dataset of size 50K.

50 K 250 K 1 M 5M

L. Ma’s First Index 5050 2540 787 108

HexaStore 5226 2644 848 114

Neumann’s RDF Index 5340 2651 835 115

Current Approach 5360 2684 880 120

0
1000
2000
3000
4000
5000
6000

Q
M

p
H

BSBM Dataset Size

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

L. Ma’s First Index 55 35 48 41 44 6 37 39 73 45 66 48

HexaStore 56 35 48 42 44 7 38 42 76 46 68 50

Neumann’s RDF Index 58 36 50 42 45 7 39 44 78 48 70 51

Current Approach 58 36 50 42 45 7 39 44 79 48 69 52

0
20
40
60
80

100

Q
p

S

BSBM Queries

DOI:10.4186/ej.2015.19.5.139

ENGINEERING JOURNAL Volume 19 Issue 5, ISSN 0125-8281 (http://www.engj.org/) 145

Fig. 4. QpS analysis of RDF indexing methods on BSBM benchmark dataset of size 250K.

Fig. 5. QpS analysis of RDF indexing methods on BSBM benchmark dataset of size 1M.

Fig. 6. QpS analysis of RDF indexing methods on BSBM benchmark dataset of size 5M.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

L. Ma’s First Index 53 32 49 40 43 1 37 41 73 46 67 49

HexaStore 57 34 50 42 45 1 38 42 76 47 69 51

Neumann’s RDF Index 58 34 50 42 45 1 38 44 77 48 69 50

Current Approach 59 37 50 43 45 1 38 43 78 48 69 52

0
10
20
30
40
50
60
70
80
90

Q
p

S

BSBM Queries

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

L. Ma’s First Index 27 15 44 29 25 0 23 22 33 26 32 39

HexaStore 51 28 48 31 30 0 28 35 39 40 47 35

Neumann’s RDF Index 55 25 48 41 33 0 28 38 39 40 50 35

Current Approach 57 28 51 43 29 0 31 37 42 42 50 51

0

10

20

30

40

50

60

Q
p

S

BSBM Queries

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

L. Ma’s First Index 17 7 8 8 7 0 5 7 1 8 3 24

HexaStore 31 10 14 18 24 0 15 18 2 37 4 29

Neumann’s RDF Index 46 15 24 16 11 0 28 27 2 39 7 50

Current Approach 50 17 25 18 23 0 28 18 3 41 7 51

0

10

20

30

40

50

60

Q
p

S

BSBM Queries

DOI:10.4186/ej.2015.19.5.139

146 ENGINEERING JOURNAL Volume 19 Issue 5, ISSN 0125-8281 (http://www.engj.org/)

b) SP2 benchmark dataset

The next set of tests have been carried out on various sizes of SP2 benchmark datasets to compare the
performance of the current approach with various RDF indexing methods. SP2 performance metrics are
AM of QPT, GM of QPT. In the current evaluation process, the AM and GM are measured in milliseconds.
The test results in Figs. 7 and 8 indicate that the predicate based partitioning and indexing approach
improves query performance.

Fig. 7. Test results using SP2 datasets: AM of QPT.

Fig. 8. Test results using SP2 datasets : GM of QPT.

c) DBpedia real dataset

The current methodology performance is compared with other indexing methods by using DBpedia dataset.
DBpedia performance metric is QPT in milliseconds of individual queries. DBpedia has three kinds of data
sets of different sizes. They are homepages dataset of 2L size, geo-coordinates dataset of size 4.5L and
infoboxes dataset of 15M size. All the three types of DBpedia are considered in the evaluation process. It is
observed that the current methodology is showing improved results with DBpedia infoboxes and
homepages datasets. For geo-coordinates DBpedia dataset, the performance is almost same as other
indexing approaches. Figures 9–11 show evaluation results. The results are presented using two different
scales depending on the execution time.

50 K 250 K 1 M 5 M

L. Ma’s First Index 720.56 3417.02 4512 52012

HexaStore 718.09 3317.13 4394.07 54180.97

Neumann’s RDF Index 679.47 3189.11 3967.41 57067.26

Current Approach 574.95 2279.84 3046.57 42175.34

0

10000

20000

30000

40000

50000

60000

A
M

 o
f

Q
P

T

SP2 Dataset Size

50 K 250 K 1 M 5 M

L. Ma’s First Index 211.16 295.32 325.62 502.52

HexaStore 209.32 225.03 324.43 499.13

Neumann’s RDF Index 149.87 198.41 315.41 522.71

Current Approach 98.82 102.67 257.61 368.51

0
100
200
300
400
500
600

G
M

 o
f

Q
P

T

SP2 Dataset Size

DOI:10.4186/ej.2015.19.5.139

ENGINEERING JOURNAL Volume 19 Issue 5, ISSN 0125-8281 (http://www.engj.org/) 147

Fig. 9. Comparison of RDF indexing methods on DBpedia homepages dataset of size 2L.

Fig. 10. Comparison of RDF indexing methods on DBpedia geo-coordinates dataset of size 4.5L.

Fig. 11. Comparison of RDF indexing methods on DBpedia infoboxes dataset of size 15M.

4.2. R&D Project Management Dataset

Several subject areas relevant to the R&D project management domain are identified as follows:

 Project

 Person

 Document

 Event

 Equipment

Q1 Q2 Q3 Q4 Q5

L. Ma’s First Index 21 43 11 24 24

HexaStore 22 44 11 23 24

Neumann’s RDF Index 21 43 11 24 24

Current Approach 21 4 3 22 21

0
10
20
30
40
50

Q
P

T

DBpedia Queries

Q4 Q5

Series1 13150 13135

Series2 13203 13135

Series3 13175 13051

Series4 13180 13053

Q1 Q2 Q3

L. Ma’s First Index 47 5 5

HexaStore 47 5 5

Neumann’s RDF Index 46 5 5

Current Approach 46 5 5

0

10

20

30

40

50

Q
P

T

DBpedia Queries

13000
13050
13100
13150
13200
13250

Q3 Q4 Q5

Series1 38 24 23

Series2 26 24 24

Series3 26 25 25

Series4 21 18 24

Q1 Q2

L. Ma’s First Index 3442 6779

HexaStore 3386 6837

Neumann’s RDF Index 3477 6770

Current Approach 3236 6174

0

1000

2000

3000

4000

5000

6000

7000

8000

Q
P

T

DBpedia Queries

5
10
15
20
25
30

35

40

DOI:10.4186/ej.2015.19.5.139

148 ENGINEERING JOURNAL Volume 19 Issue 5, ISSN 0125-8281 (http://www.engj.org/)

 Organization

 Publications

 Results

 Cost

 Research areas
To evaluate performance of the current approach against R&D project management dataset, a query set

of twenty seven SPARQL queries have been listed out considering various user requirements that covers
various SPARQL query constructs. Table 2 gives user queries and their SPARQL representation. Table 3
shows the mapping of various SPARQL queries constructs to user queries.

Table 2. User queries and their SPARQL representation.

Q1. List R&D projects order by value of grant-in-aid

PREFIX proj: <http://www.drdo.org/Project#>
SELECT ?p ?cost
WHERE
 { ?p a proj:Project; proj:Cost ?cost}
order by DESC(?cost)

Q2. List institutions order by funds received in the current year

PREFIX proj: <http://www.drdo.org/Project#>
PREFIX org: <http://www.drdo.org/Organization#>
SELECT ?org (SUM(?cost) AS ?amt)
WHERE
 { ?p proj:Cost ?cost; proj:sponsored_to ?org}
GROUP BY ?org
Order by DESC(?amt)

Q3. List top ten institutions based on total funds received in the last three years

PREFIX proj: <http://www.drdo.org/Project#>
PREFIX org: <http://www.drdo.org/Organization#>
SELECT ?o (SUM(?c) as ?tot_fund)
WHERE
 {?p proj:sponsored_to ?o; proj:Cost ?c.}
GROUP BY ?o
order by DESC(?tot_fund)
LIMIT 10

Q4. List total number of projects sanctioned group by subject

PREFIX proj: <http://www.drdo.org/Project#>
SELECT ?sub (COUNT(?p) as ?no_of_proj)
WHERE
 { ?p a proj:Project; proj:Area ?sub}
GROUP BY ?sub

Q5. List number of projects sanctioned group by state

PREFIX proj: <http://www.drdo.org/Project#>
PREFIX org: <http://www.drdo.org/Organization#>
SELECT ?st (COUNT(?p) as ?no_of_proj)
WHERE
 {?p proj:sponsored_to ?o. ?o org:State ?st}
GROUP BY ?st

Q6. Find number of projects granted and total funds released to a specific PI

PREFIX per: <http://www.drdo.org/Person#>
PREFIX proj: <http://www.drdo.org/Project#>
select (COUNT(?pro) as ?no_of_proj) (SUM(?c) as ?tot_fund)
where {per:R_Thaokar per:is_responsible_of ?pro. ?pro proj:Cost ?c}

Q7. Funds released to South India / North India

PREFIX proj: <http://www.drdo.org/Project#>

DOI:10.4186/ej.2015.19.5.139

ENGINEERING JOURNAL Volume 19 Issue 5, ISSN 0125-8281 (http://www.engj.org/) 149

PREFIX org: <http://www.drdo.org/Organization#>
PREFIX reg: <http://www.drdo.org/Region#>
SELECT ?st (SUM(?c) as ?tot_fund)
WHERE
 {?p proj:sponsored_to ?o; proj:Cost ?c. ?o org:State ?st FILTER EXISTS{?r a reg:South;
reg:name ?st}}
GROUP BY ?st

Q8. Find total amount granted under particular scheme in a particular year

PREFIX org: <http://www.drdo.org/Organization#>
PREFIX proj: <http://www.drdo.org/Project#>
Select (SUM(?c) as ?tot_fund) where {?p proj:Scheme_Short_Name ?s FILTER(?s="BRNS"). ?p
proj:Cost ?c}

Q9. Total funds released to a specific state

PREFIX org: <http://www.drdo.org/Organization#>
PREFIX proj: <http://www.drdo.org/Project#>
Select (SUM(?c) as ?tot_fund) where {?o org:holds ?p. ?p proj:Cost ?c. FILTER EXISTS {?o org:State
"Kerala"}}

Q10. List out projects grants above one crore.

PREFIX proj: <http://www.drdo.org/Project#>
Select ?p where {?p proj:Cost ?c FILTER (?c>10000000.00)}

Q11. List projects granted to either Universities or National_Laboratories

PREFIX proj: <http://www.drdo.org/Project#>
PREFIX org: <http://www.drdo.org/Organization#>
Select ?p where {{?o a org:National_Laboratory; org:holds ?p} UNION {?o a org:University;
org:holds ?p}}

Q12. List projects granted to both Govt. and Autonomous institutions

PREFIX proj: <http://www.drdo.org/Project#>
PREFIX org: <http://www.drdo.org/Organization#>
Select ?p where {?o a org:Autonomous; a org:University; org:holds ?p}

Q13. List out projects grants between 20 to 50 lakhs

PREFIX proj: <http://www.drdo.org/Project#>
Select ?p where {?p proj:Cost ?c FILTER (?c>=2000000.00&&?c<=5000000.00)}

Q14. List out projects granted between 2010 –2011 years

PREFIX proj: <http://www.drdo.org/Project#>
Select ?p where {?p proj:Year "2010-11"}

Q15. Number of projects granted to female PI’s

PREFIX proj: <http://www.drdo.org/Project#>
PREFIX per: <http://www.drdo.org/Person#>
Select (COUNT(?p) as ?no_of_proj) where {?pi per:is_responsible_of ?p; per:Gender "F"}

Q16. Find total amount granted in particular year

PREFIX proj: <http://www.drdo.org/Project#>
Select (SUM(?c) as ?tot_amt) where {?p proj:Cost ?c; proj:Year "2010-11"}

Q17. Find weather a specific state received any grants or not

PREFIX org: <http://www.drdo.org/Organization#>
ASK {?o org:holds ?p; org:State "Kerala"}

Q18. Generate a graph of total funds received by various states

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> PREFIX org:
<http://www.drdo.org/Organization#>
PREFIX proj: <http://www.drdo.org/Project#>
CONSTRUCT { ?st proj:tot_amt ?tot_fund }
where { {SELECT (SUM(?c) as ?tot_fund) WHERE {?o org:holds ?p; org:State ?st. ?p proj:Cost ?c}
GROUP BY ?st}}

Q19. Export projects of grant more than one crore

PREFIX proj: <http://www.drdo.org/Project#>
CONSTRUCT {?p proj:Cost1 ?c}

DOI:10.4186/ej.2015.19.5.139

150 ENGINEERING JOURNAL Volume 19 Issue 5, ISSN 0125-8281 (http://www.engj.org/)

where {?p proj:Cost ?c FILTER (?c>10000000.00)}

Q20. List out PI and patents derived out of funded projects

PREFIX proj: <http://www.drdo.org/Project#>
PREFIX per: <http://www.drdo.org/Person#>
select ?pi ?pub {?pi per:is_responsible_of ?p. OPTIONAL {?p proj:publications ?pub}}

Q21. List out all PI and publications greater than two

PREFIX proj: <http://www.drdo.org/Project#>
PREFIX per: <http://www.drdo.org/Person#>
select ?pi ?pub {?pi per:is_responsible_of ?p. OPTIONAL {?p proj:no_of_publications ?pub.
FILTER(?pub>2.0)}}

Q22. List out all publications derived out of funded projects

PREFIX proj: <http://www.drdo.org/Project#>
PREFIX per: <http://www.drdo.org/Person#>
select ?p ?pub {?p proj:publications ?pub}

Q23. List out projects which have no publication

PREFIX proj: <http://www.drdo.org/Project#>
PREFIX per: <http://www.drdo.org/Person#>
select ?p {?p proj:publications ?pub FILTER(!bound(?pub))}

Q24. List out projects which has got publications and patents from funded projects

PREFIX proj: <http://www.drdo.org/Project#>
PREFIX per: <http://www.drdo.org/Person#>
select ?p {?p proj:publications ?pub; proj:patents ?pet.}

Q25. List projects where PI is JRF itself

PREFIX proj: <http://www.drdo.org/Project#>
PREFIX per: <http://www.drdo.org/Person#>
select ?pi {?pe per:Full_Name ?jn; per:Full_Name ?pi FILTER(?jn=?pi)}

Q26. List out all projects order by number of publications

PREFIX proj: <http://www.drdo.org/Project#>
select ?p {?p proj:no_of_publications ?pub}
order by DESC(?pub)

Q27. List out all PI patents and their publications

PREFIX proj: <http://www.drdo.org/Project#>
select ?pi ?pub {?p proj:has_PI ?pi.
OPTIONAL{?p proj:publications ?pub}.
OPTIONAL{?p proj: patents ?pet}}

For R&D project management dataset, the evaluation of the current methodology is done by

measuring overall and individual query performance. The individual query performance is measured by
QPT in milliseconds. The overall query performance is measured by AM and GM of QPT of all queries
from the query set. It is observed that the predicate based partitioning and indexing method improves the
overall query performance. AM metric are shown in Fig. 12. GM metric are shown in Fig. 13.

Further series of tests are done to evaluate query performance. The queries with multiple pattern and
filters are taking slightly more time (in milliseconds). 24 query patterns out of twenty seven are showing
better performance using the current methodology with R&D project management dataset. Results are
presented in the graph depending on the execution time. Fig. 14a shows individual query performance of
queries of QPT less than thousand milliseconds. Fig. 14b shows individual query performance of queries of
QPT more than thousand milliseconds.

DOI:10.4186/ej.2015.19.5.139

ENGINEERING JOURNAL Volume 19 Issue 5, ISSN 0125-8281 (http://www.engj.org/) 151

Table 3. Mapping of various SPARQL queries constructs to user queries.

O

rd
er

 B
y

A
gg

re
ga

te

F
u
n

ct
io

n
s

L
IM

IT

G
ro

u
p

 B
y

F
IL

T
E

R

S
el

f-
Jo

in

U
n

io
n

M
u
lt

ip
le

p
at

te
rn

N
eg

at
io

n

U
n

b
o

u
n

d
ed

B
et

w
ee

n

O
p

ti
o

n
al

C
o

n
st

ru
ct

A
sk

Q1 *

*

Q2

*

*

*

Q3 * * * *

*

Q4

*

*

*

Q5

*

*

*

Q6

*

*

Q7

*

* *

*

Q8

*

*

*

Q9

*

*

*

Q10

*

Q11

* *

Q12

*

Q13

*

*

Q14

*

Q15

*

*

Q16

*

*

Q17

*

*
Q18

*

*

*

*

Q19

*

*

Q20

*

Q21

*

*

Q22

*

Q23

*

*

Q24

*

Q25

* *

*

Q26 *

Q27

*

*

Fig. 12. Arithmetic mean of QPT with respect to various RDF indexing methods on R&D project

management dataset.

L. Ma’s First Index HexaStore
Neumann’s RDF

Index
Current Approach

AM 11214.48148 10571.74074 11506.88889 6798.777778

0

2000

4000

6000

8000

10000

12000

14000

A
M

 o
f

Q
P

T

RDF Indexing Methods

DOI:10.4186/ej.2015.19.5.139

152 ENGINEERING JOURNAL Volume 19 Issue 5, ISSN 0125-8281 (http://www.engj.org/)

Fig. 13. Geometric mean of QPT with respect to various RDF indexing methods on R&D project

management dataset.

Fig. 14a. Individual query performance of queries of QPT less than thousand milliseconds.

Fig. 14b. Individual query performance of queries of QPT more than thousand milliseconds.

L. Ma’s First
Index

HexaStore
Neumann’s
RDF Index

Current
Approach

GM 173.8880093 116.4439404 141.6944904 77.42752796

0

50

100

150

200

G
M

 o
f

Q
P

T

RDF Indexing Methods

Q
1

Q
4

Q
5

Q
6

Q
8

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
19

Q
20

Q
21

Q
22

Q
23

Q
24

Q
25

Q
26

Q
27

L. Ma’s First Index 375 31 63 390188 78 47 31 78 15 63 63 31 75 40 40 20 30 25 35 25 25

HexaStore 62 31 47 31 47 46 16 16 47 16 31 47 16 85 35 35 25 25 20 64 20 45

Neumann’s RDF Index 204 31 63 47 94 63 46 15 63 16 62 62 31 80 35 35 20 25 20 30 20 50

Current Approach 31 16 47 31 48 31 15 15 47 10 31 31 11 56 11 19 10 10 9 46 9 18

0
50

100
150
200
250
300
350
400
450

Q
P

T

Queries

Q2 Q3 Q7 Q9 Q18

L. Ma’s First Index 43237 49539 33507 7392 167348

HexaStore 43503 47627 24146 3610 165744

Neumann’s RDF Index 54977 53438 33508 2783 164868

Current Approach 40737 43638 23548 3500 71592

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

Q
P

T

Queries

DOI:10.4186/ej.2015.19.5.139

ENGINEERING JOURNAL Volume 19 Issue 5, ISSN 0125-8281 (http://www.engj.org/) 153

5. Conclusion and future work

The current research work has proposed predicate centric partitioning and multiple RDF indexing for
database triple store. The evaluation of the method is done by using various query performance metrics.
The query performance is evaluated by implementing the current methodology on various datasets and
compared the results with various RDF indexing methods. The current work has considered BSBM, SP2
benchmark datasets and DBPedia real dataset as a test bed. Further the partitioning and indexing method is
applied to R&D project management dataset. The results indicate that, the overall query performance is
improved when compared to other indexing techniques and shows very effective results for R&D project
management dataset. The effectiveness of the partitioning and multiple RDF indexing method is compared
with L. Ma’ first indexing, HexaStore and Neumann’s RDF indexing approaches. The test results indicate,
the proposed method improves overall query performance. It is observed that 24 queries out of query set
of 27 queries, has improved query performance. The present research is hoped to form a reference baseline
for further research work on the effectiveness of the queries with filter, multiple pattern and unknown
predicate.

References

[1] T. R. Gruber, “A translation approach to portable ontology specifications,” Knowledge Acquisition, vol. 5,

pp. 199−220, 1993.
[2] J. Martinez-Gil and J. F. Aldana-Montes, “KnoE: A web mining tool to validate previously discovered

semantic correspondences,” Journal of Computer Science and Technology, vol. 27, no. 6, pp. 1222–1232,
Nov. 2012.

[3] M. Horridge, “What are owl ontologies?,” in A Practical Guide To Building OWL Ontologies Using Protégé 4
and CO-ODE Tools, Edition 1.3. The University Of Manchester, Mar. 2001, pp. 10–12.

[4] M. K. Smith, C. Welty, and D. L. McGuinness. (2004). OWL Web Ontology Language Guide.
[Online]. Available: http://www.w3.org/TR/owl-guide/

[5] D. Brickley and R.V. Guha. (2004). RDF Vocabulary Description Language 1.0: RDF Schema.
[Online]. Available: http://www.w3.org/TR/rdf-schema/

[6] M. Frank and M. Eric. (2004). RDF Primer. [Online]. Available: http://www.w3.org/TR/rdf-primer/
[7] A. Sunitha and G. Suresh Babu, “Survey on ontology languages,” CiiT International Journal of Artificial

Intelligent Systems and Machine Learning, vol. 5, 2013, pp. 440–445.
[8] B. DuCharme, “The semantic web, RDF, and linked data (and SPARQL),” in Learning SPARQL, 2nd

ed. USA: O’Reilly Media, 2013, pp. 19–45.
[9] D2R Server: Accessing Databases with SPARQL and as Linked Data. [Online]. Available:

http://d2rq.org/d2r-server
[10] Mapping SQL Data to Linked Data Views. [Online]. Available:

http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VOSSQL2RDF
[11] B. Christian and S. Andreas, “The Berlin SPARQL benchmark,” International Journal on Semantic Web &

Information Systems, vol. 5, no. 2, pp. 1–24, 2009.
[12] AllegroGraph. [Online]. Available: http://www.franz.com/products/allegrograph/index.lhtml
[13] Jena TDB. [Online]. Available: http://jena.apache.org/documentation/tdb/
[14] Y. Chen, J. Ou, Y. Jiang, and X. Meng, “HStar-a semantic repository for large scale owl documents,”

in Proc. 1st Asian Semantic Web Conference, Lecture Notes in Computer Science, Springer, 2006, vol. 4185, pp.
415–428.

[15] Jena SDB. [Online]. Available: http://jena.apache.org/documentation/sdb/
[16] M. Chuck, Oracle Database Semantic Technologies Developer’s Guide, 11g Release 2 (11.2). Jun. 2013.
[17] Virtuoso. [online] Available http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
[18] S. Heymans, L. Ma, D. Anicic, Z. Ma, N. Steinmetz, Y. Pan, J. Mei, A. Fokoue, A. Kalyanpur, A.

Kershenbaum, E. Schonberg, K. Srinivas, C. Feier, G. Hench, B. Wetzstein, and U. Keller, “Ontology
reasoning with large data repositories,” Ontology Management: Semantic Web, Semantic Web Services and
Business. Springer, 2008, ch. 4.

[19] L. Al-Jadir, C. Parent, and S. Spaccapietra, “Reasoning with large ontologies stored in relational
databases: the ontomind approach,” Journal of Data & Knowledge Engineering, vol. 69, no. 11, pp. 1158–
1180, Nov. 2010.

DOI:10.4186/ej.2015.19.5.139

154 ENGINEERING JOURNAL Volume 19 Issue 5, ISSN 0125-8281 (http://www.engj.org/)

[20] C. Supasate and I. Chalermek, “An analysis of deductive-query processing approaches for logic
macroprograms in wireless sensor networks,” Engineering Journal, vol. 16, no. 4, pp. 47–61, Jul. 2012.

[21] X. Wang, W. Shuyi, D. Pufeng, and F. Zhiyong, “Storing and indexing RDF data in a column-oriented
DBMS,” in Proc. 2nd International Workshop on Database Technology and Applications (DBTA), IEEE, 2000,
pp. 1–4.

[22] D. Beckett and J. Grant. Mapping Semantic Web Data with RDBMSes, SWAD-Europe Deliverable
10.2, 2003. [Online]. Available: http://www.w3.org/2001/sw/Europe/reports/scalable
_rdbms_mapping_report/

[23] D. Kolas, I. Emmons, and M. Dean, “Efficient linked-list RDF indexing in parliament,” in Proc. The
Fifth International Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS2009), pp. 17–32.

[24] G. H. L. Fletcher and W. B. Peter, “Scalable indexing of RDF graphs for efficient join processing,” in
Proc. The 18th ACM Conference on Information and Knowledge Management, Nov. 2–6, 2009, pp. 1513–1516.

[25] L. Ma, Z. Su, Y. Pan, L. Zhang, and T. Liu, “RStar: An RDF storage and query system for enterprise
resource management,” in Proc. the Thirteenth ACM International Conference on Information and Knowledge
Management, ACM, 2004, pp.484–491.

[26] C. Weiss, P. Karras, and A. Bernstein, “Hexastore: Sextuple indexing for semantic web data
management,” in Proc. the VLDB Endowment, Aug. 2008, vol. 1, no. 1, pp. 1008–1019.

[27] T. Neumann and G. Weikum, “xRDF3X:fast querying, high update rates, and consistency for RDF
databases,” in Proc. the VLDB Endowment, Sept. 2010, vol. 3, no. 1–2, pp. 256–263.

[28] Advantages of using table partitioning. [Online]. Available http://www.dbatodba.com/db2/db2-udb-
v9/advantages-of-using-table-partitioning/

[29] S. Harris and A. Seaborne, (2013). SPARQL 1.1 Query Language. [Online]. Available:
http://www.w3.org/TR/sparql11-query/

[30] D. Songyun, K. Anastasios, S. Kavitha, and U. Octavian, “Apples and oranges: A Comparison of
RDF benchmarks and real RDF datasets,” in Proc. Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data, New York, NY, USA, 2011, pp. 145–156.

[31] RDF Store Benchmarks with DBpedia. [Online]. Available: http://wifo5-03.informatik.uni-
mannheim.de/benchmarks-200801/

[32] S. Michael, H. Thomas, L. Georg, and P. Christoph, (2008). SP2Bench: A SPARQL Performance
Benchmark. [Online]. Available: http://arxiv.org/abs/0806.4627

