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Abstract. Photocatalytic degradations of various contaminants using in-house synthesized 
catalysts have been generally reported, but the degradation intermediates formed are 
normally inconsistent. This issue is particularly important for the degradation of toxic 
compounds which may form intermediates with increased toxicity. This work resolves this 
issue by systematically investigating adsorption and photocatalytic degradation of diuron, 
linuron, and 3,4-dichloroaniline (DCA) on two forms of zinc oxide (ZnO), i.e., 
conventional particles with zinc- and oxygen-terminated polar surfaces, and nanorods with 
mixed-terminated non-polar surfaces. Experimental results indicate that both rate of 
degradation and degradation pathway depend upon the adsorption configuration of the 
compound undergoing the degradation onto the surface of the catalyst. The adsorption 
configuration is surface dependent. On polar surfaces, both aliphatic and aromatic sides of 
diuron and linuron molecules adsorb on the surface, allowing the attack of hydroxyl 
radicals on both ends. On the other hand, on non-polar surface, only the aliphatic chain 
adsorbs onto the surface, resulting in the hydroxyl radicals attack only on the aliphatic side. 
The structure of the catalyst is therefore a crucial factor determining the dominant 
degradation pathway. 
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1. Introduction 
 
Serious water contaminations in many agricultural countries are the results from leaching of residual 
herbicides [1, 2]. Phenyl urea herbicides, such as diuron [3-(3,4-dichlorophenyl)-1,1-dimethyl urea] and 
linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea], are specially problematic because not only they 
are highly toxic [3], but they are also highly recalcitrant [4]. Many processes have been applied in an attempt 
to remediate water contaminated with these herbicides [5, 6], but their typically low concentration renders 
these techniques ineffective.  

Heterogeneous photocatalytic degradation is a technique capable of removal of toxic contaminants in 
water [7, 8]. The process relies on oxidation of the pollutant, which is adsorbed on surface of the 

photocatalyst, by highly active hydroxyl radicals (OH). In aqueous solution, the radicals are produced by 
the reactions between photogenerated holes (h+) and surrounding water or hydroxyl ions [9]. Although the 
hydroxyl radicals are strong oxidizer, the degradation of the contaminants usually involves several 
intermediates. A number of researches have reported the degradation of the same compound using the 
same kind of catalyst [10-12], but the intermediates detected are usually different. This issue is particularly 
important and needs to be resolved, especially for the degradation of toxic contaminants, because some 
intermediates may be more toxic than their parent compounds [13, 14] and benign pathways are desired. 

It is a common knowledge that the adsorption is surface dependent, but its subsequent effect on the 
formation of the degradation intermediates has not been thoroughly investigated. This work provides 
supports that the variations in the intermediates are the result from the difference in adsorption 
configuration on the surface of the catalyst. Wurtzite zinc oxide (ZnO) was chosen as the catalyst in this 
study because it could be synthesized in a manner such that the exposed surfaces could be controlled [15]. 

Two main sets of ZnO surfaces were considered; (i) zinc-terminated (0001) and oxygen-terminated (0001̅) 
polar surfaces located on top and bottom planes of the hexagonal ZnO crystal, and (ii) mixed-terminated 

(101̅0) non-polar surface appeared as the side planes of the crystal. Two types of ZnO were used, i.e., 
conventional ZnO particles, of which the main exposed surfaces, are polar surfaces, and ZnO nanorods, 
which are consisted mainly of the mixed-terminated surface. Diuron and linuron, as well as 3,4-
dichloroaniline (DCA), which shares similar molecular structure as diuron and linuron (see Fig. 1), were 
studied as the compounds to be degraded. 

 
 

 
 

Fig. 1. Molecular structures of diuron (a), linuron (b), and DCA (c). 
 

2. Materials and Methods 
 
2.1. Syntheses of ZnO 

 
Conventional ZnO powder was synthesized via the sol-gel technique. A mixture containing ethanol, 
diethanolamine, hydrochloric acid, and deionized water in amounts of 5, 1.58, 0.18, and 0.25 mL, 
respectively, was slowly dropped into a solution of zinc acetate (3.29 g) in 20 mL of deionized water. The 
mixture was stirred for 2 h and was aged without stirring for 24 h. After being dried at 80°C overnight, the 
mixture was transformed into a gel. The gel was aged further for 3 days before being calcined at 500°C for 
2 h to obtain ZnO powder. 

On the other hand, ZnO nanorods were synthesized via the hydrothermal method. A precursor 
solution was prepared from 1.1 g of zinc acetate in 4 mL of deionized water and 6 mL of 8 M sodium 
hydroxide aqueous solution. Then, 2 mL of the precursor solution was mixed with 5 mL of polyethylene 
glycol and 20 mL of ethanol. The mixture was heated at 140°C for 1 h under autogenous pressure in a 
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Teflon-lined autoclave. The precipitate was washed with ethanol and deionized water before being dried at 
60°C overnight. 

 
2.2. Adsorption Studies 

 
In the studies of adsorption of diuron, linuron and DCA onto two types of ZnO catalyst, aqueous solutions 
of the adsorbate was prepared with concentrations in the range of 0-25 mg/L. The adsorption was 

conducted by immersing the catalyst into the solution, of which the temperature was controlled to 252°C. 
The catalyst content was 1 mg/mL of the solution. The system was kept in the dark for 6 h, which was 
experimentally determined to be sufficient to reach adsorption equilibrium. Then, the equilibrium 
concentration of the solution was determined by reverse-phase high-performance liquid chromatography 
(HPLC, Shimadzu Class 10VP) [16]. 

 
2.3. Photocatalytic Degradation 

 
The photocatalytic degradation was conducted in a microreactor, in which the mass transfer resistance for 
the transport of the compound undergoing degradation to the surface of the catalyst could be neglected 
[16]. Moreover, the residence time for the reaction could be easily controlled, enabling us to determine the 
sequence of the intermediates formed from the degradation. The microreactor was fabricated in a plate-like 
manner. A piece of glass that had been coated by 6.8 mg of the catalyst via spin-coating was assembled with 

another piece of glass into which inlet and outlet streams had been drilled. A Teflon sheet with a 0.8 cm  
4.8 cm opening was placed between the pieces of glass, forming a channel. The height of the channel was 

determined by the thickness of the Teflon sheet (250 m). The microreactor assembly was then mounted in 
a stainless-steel housing. 

A 10 ppm aqueous solution of herbicides was constantly supplied into the microreactor via a syringe 
pump for 1 h prior to the irradiation to ensure complete adsorption onto the catalyst. Then, the reactor was 
irradiated with light from a 40-W mercury lamp (Philips F40T12/BL), with an emission spectrum in the 
wavelength range of 350-410 nm, to initiate the reaction. The power flux at the location of the reactor was 

found to be 3.1810−6 W/cm2, measured by an ILT1700 Research Radiometer (International Light 
Technologies) with SED005 GaAsP UV detector. The flowrate was controlled to correspond to the desired 
residence time in the range of 1-15 min. The concentration of the compound undergoing degradation was 
monitored at the outlet by HPLC. After reaching a steady state, a sample was collected for identification of 
the intermediates via liquid chromatography equipped with tandem mass spectroscopy (LC-MS/MS, 
Thermo Finnigan, LCQ Advantage). It should be noted that, according to a preliminary test using 
inductively coupled plasma optical emission spectroscopy (ICP-OES, PerkinElmer Optima7000DV), less 
than 0.5% of the catalyst detached from the reactor throughout the whole period of the experiment. 
 

3. Results and Discussion 
 
3.1. Characteristics of the Catalysts 
 
Micrographs shown in Fig. 2 indicate that ZnO synthesized by both techniques are significantly different in 
particle size and morphology. On one hand, the conventional ZnO particles obtained from the sol-gel 

technique are micron-sized with low aspect ratio. The hexagonal plane, which is either the (0001) or (0001̅) 
surface, is clearly visible. On the other hand, the ZnO nanorods synthesized via the hydrothermal method 

are about 50 nm in diameter and about 300-400 nm in length. The dominating plane is the (101̅0) surface. 
The specific surface area of the nanorods, as measured by nitrogen adsorption/desorption using a 
Brunauer-Emmett-Teller (BET) analyzer (Belsorp mini II), is much higher than that of the conventional 
particles, i.e., 17 m2/g versus 1.4 m2/g. According to X-ray diffraction analyses, both catalysts are ZnO in 
wurtzite phase without contamination from other crystalline phases. The selected-area electron diffraction 
(SAED) patterns confirm that both catalysts are indeed single crystals (see insets in Fig. 2). An X-ray 
photoelectron spectroscopy (XPS, Kratos DLD) revealed that both catalysts contain only zinc and oxygen. 
The high-resolution XPS scan of O1s indicated three states of oxygen, i.e., oxygen in hydroxyl group, 
oxygen vacancies, and oxygen in ZnO lattice, locating at the binding energy of 532.2, 531.0, and 530.0 eV, 
respectively (see Fig. 3). The contents of each state of oxygen in both catalysts are about the same, 
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indicating similar surface functional groups of these catalysts. The optical bandgaps of both catalysts, 
calculated from Tauc plots measuresd by reflective UV/Visible spectroscopy, are the same at 3.1 eV. Hence, 
the major difference between these catalysts is their exposing surfaces. 
 

 
 
Fig. 2. Scanning electron micrographs and selected-area electron diffraction patterns (shown as inset) of 
conventional ZnO powder synthesized by sol-gel technique (a) and ZnO nanorods synthesized by 
hydrothermal method (b). 
 

 
 (a) (b) 

 
Fig. 3. X-ray photoelectron spectroscopy of conventional ZnO powder synthesized by sol-gel technique 
(a) and ZnO nanorods synthesized by hydrothermal method (b). 

 
 
3.2. Adsorption Results 
 
After the adsorption experiments, the obtained results were fitted with various adsorption isotherm models. 
It was found that the Freundlich isotherm represents the adsorption data well (see Fig. 4). All fitted 
parameters from the Freundlich model are shown in Table 1. The values of 1/n for all cases are less than 1, 
which indicate that adsorptions of diuron, linuron, and DCA on both types of ZnO catalysts are physical 
adsorption [17]. This is consistent with the fact that the Langmuir adsorption model, which best describes 
chemisorption, failed to fit the experimental data. Furthermore, according to Fourier transform infrared 
spectroscopic analyses of the used catalysts, no signal corresponding to a new bond between the adsorbates 
and the catalysts was detected. 
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 (a) (b) (c) 
 
Fig. 4. Experimental data fitted with Freundlich model for adsorption isotherm of diuron (a), linuron (b), 
and DCA (c) on conventional ZnO particles (solid lines) and ZnO nanorods (dash lines). 

 
Table 1. Fitted parameters for Freundlich adsorption model. 

 

Parameter On conventional ZnO particles On ZnO nanorods 

DCA Diuron Linuron DCA Diuron Linuron 

Kf 0.110 0.082 0.101 0.049 0.028 0.036 
1/n 0.868 0.959 0.849 0.772 0.815 0.901 
R2 0.992 0.983 0.998 0.976 0.978 0.999 

 
The fitted parameter relating to adsorption capacity (Kf) for adsorption on the conventional ZnO 

particles is about twice the value for the nanorods. They clearly show that greater amounts of all 
investigated adsorbates were adsorbed on the conventional ZnO particles than on the ZnO nanorods, even 
though the surface area of the former is one order of magnitude lower than the latter. Zinc- and oxygen-
terminated polar surfaces are composed of only one kind of atom on the surface, while the mixed-
terminated surface is formed by alternate arrangement of zinc and oxygen atoms. The non-polar mixed-
terminated surface of the nanorods does not possess electrostatic instability and hence is less active in 
adsorption than the polar surfaces [18, 19].  

For diuron and linuron, polar parts of the molecules are attracted to high affinity of polar surfaces of 
the conventional ZnO particles. Interestingly, the molecules of diuron and linuron are consisted of both 
negatively and positively charged parts, which enable them to be adsorbed onto both zinc- and oxygen-
terminated surfaces of the conventional ZnO particles. The highly positively charged region is located on 
hydrogen atoms adjacent to high-electronegativity atom such as nitrogen and oxygen [20, 21]. This part of 
the molecule is predicted to adsorb onto oxygen-terminated surface and form weak hydrogen bond with 
oxygen atoms on the surface [22]. The most negatively charged area of diuron and linuron is located at 
oxygen atom of the carbonyl group, which is expected to adsorb onto zinc-terminated surface. For DCA, 
hydrogen atoms of its amine group is the most positively charged part of the molecule, while the nitrogen 
and chlorine atoms are negatively charged [23]. These parts are expected to adsorb onto polar surfaces in 
the same manner as diuron and linuron. 

Among all three adsorbates investigated, the adsorption capacity of DCA is significantly higher than 
that of diuron and linuron. It is expected to be the result from small molecular size of DCA, which allows 
more DCA molecules to be accommodated on the surface. Between diuron and linuron, which share very 
similar molecular structure, Kf of linuron are higher than that of diuron. This is due to additional negatively 
charged area on aliphatic chain of linuron, i.e., its alkoxy group, which increases opportunity in adsorption 
[21]. It should be noted that high-electronegativity oxygen atom in the alkoxy group of linuron, which is the 
expected part of the molecule to adsorb onto ZnO surface, is connected to a methyl group by a rotatable 
single bond, allowing the linuron molecule to easily adjust its configuration for adsorption. On the other 
hand, for diuron, reconfiguration of the molecule to let its oxygen atom to adsorb onto the surface is more 
difficult because the oxygen is bonded by a non-rotatable double bond. 
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3.3. Photocatalytic Degradation 
 
The photocatalytic oxidation of an organic compound adsorbed on a catalyst can in principle take place via 
direct oxidation by photogenerated holes or via indirect oxidation by hydroxyl radicals. For the degradation 
in aqueous solution, the indirect oxidation is more likely to occur because of the plentiful amount of water 
surrounding the catalyst. More importantly, it has been reported that chemisorption is a prerequisite for 
direct oxidation while physisorption favors indirect oxidation [24]. Since, the adsorptions of all species 
investigated are physisorption (see previous section), it is confirmed that the photocatalytic degradations in 
this work occurs via indirect oxidation. 

The photocatalytic degradation results are shown in Fig. 5. It should be noted that the photolysis 
degradations of all investigated contaminants are negligible in absence of the catalyst even at the longest 
residence time. For all experiments, masses of the catalysts used are the same. Therefore, according to the 
findings from the adsorption studies, the amounts of contaminants adsorbed onto the conventional ZnO 
particles are much greater than those on the nanorods. However, for diuron and linuron, the degradations 
on both catalysts are insignificantly different, which implies that the rates of degradation on the mixed-
terminated surface of the nanorods are much faster than those on polar surfaces of the conventional ZnO 
particles. Upon the irradiation of light, both catalysts are expected to generate roughly the same amount of 
holes because they both have the same energy bandgap. However, the small size of the nanorods facilitates 
holes transport to the surface of the particles. Furthermore, its large interfacial area increases the chance for 
the interaction between the holes and the adsorbed water to generate more hydroxyl radicals than that on 
the conventional ZnO particles. Nevertheless, this is not the only factor affecting the rate of degradation, 
since it is not applicable for the DCA degradation results.  

 

 
 (a) (b) (c) 
 
Fig. 5. Photocatalytic degradation results of diuron (a), linuron (b), and DCA (c) on conventional ZnO 
particles (solid lines) and ZnO nanorods (dash lines). 
 

The major difference between DCA and diuron or linuron is the lack of aliphatic moiety. The attack of 
hydroxyl radical on DCA molecule occurs on its aromatic ring, while the attack on either diuron or linuron 
can take place on either aliphatic or aromatic side, depending on the adsorption configurations. Because the 
aromatic ring is much more stable than the aliphatic part of the molecule, as witnessed from the widely 
reported observation that ring-opening is the last step of the degradation pathway [25-27], the hydroxyl 
radical attack on the aromatic side is not as effective toward the degradation as that on the aliphatic side. 
Hence, amount of DCA adsorbed on the surface is the key factor controlling the degradation rate, which 
agrees with the experimental observation that the degradation of DCA on the conventional ZnO particles 
is much faster than that on the ZnO nanorods (see Fig. 5c). The fact that the degradation behaviors of 
diuron and linuron are not the same as that of DCA also suggests that the adsorption configurations of 
diuron and linuron onto ZnO surfaces involve their aliphatic moiety. This is consistent with the discussion 
in the previous section and the report in literature [28].  

Comparing between diuron and linuron, the degradation rate of linuron is higher than that of diuron 
because of the higher reactivity of linuron [29]. The polarization of oxygen atom in the alkoxy group of 
linuron results in decreased stability of the molecule [30]. 
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3.4. Degradation Intermediates 
 
The outlet stream from the reactor was collected and analyzed by LC-MS/MS to determine the structures 
of the degradation products. Fig. 6 and 7 report the major intermediates detected at different residence time 
of diuron and linuron degradations, respectively. The pathways are inferred from the molecular structures 
of the intermediates. It should be noted that no intermediate was detected from the photolysis of diuron 
and linuron in absence of a catalyst. In the presence of the catalyst, intermediates were detected in the 
experiments with residence time of at least 1 min. It is therefore assumed that the intermediates detected at 
the residence time of 1 min were derived from photocatalytic degradations of the herbicides. It should be 
mentioned that the concentrations of the detected intermediates could not be measured because of the lack 
of commercial standard reference compounds. However, all of the intermediates reported in Figs. 6 and 7 
were assumed to have concentrations in the same order of magnitude because their corresponding 
chromatographic peak heights were similar. All paths shown are therefore major degradation pathways. For 
DCA, unfortunately, the LC-MS/MS analysis failed to reliably identify the intermediates because of small 
molecular size of DCA and its degradation intermediates. 
 

 
 

Fig. 6. Structures of diuron degradation intermediates identified by LC-MS/MS and proposed degradation 
pathway. Intermediates shown in red and green were detected when ZnO nanorods and conventional ZnO 
particles were used as the catalyst, respectively. Those shown in purple are common intermediates detected 
using both types of catalyst. 
 

Figures 6 and 7 show that molecular structures of the intermediates, hence the degradation pathways, 
are affected by type of the catalyst used. Only a few intermediates are commonly formed by the reactions 
on both catalysts. The difference in the intermediates is noticed even at the shortest residence time 
investigated, at which the intermediates are assumed to be direct products from the degradation of the 
parent compounds. On ZnO nanorods, the structures of the generated intermediates (i.e., C1, C2, C15, C16, 
and C17) suggest that both diuron and linuron are attacked by hydroxyl radicals only on the aliphatic chain 
of the molecules. There is no sign of an attack on the aromatic side within short residence time. On the 
other hand, all intermediates formed by the attack of the hydroxyl radicals on the aromatic ring (i.e., C9, 
C10, C11, C18, C19, and C20) occur only when the conventional ZnO particles are used. In fact, C9, C10, 
and C19 are formed by simultaneous attacks on both aliphatic and aromatic parts of the molecule.  
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Fig. 7. Structures of linuron degradation intermediates identified by LC-MS/MS and proposed 
degradation pathway. Intermediates shown in red and green were detected when ZnO nanorods and 
conventional ZnO particles were used as the catalyst, respectively. Those shown in purple are common 
intermediates detected using both types of catalyst. 
 

The structures of the intermediates directly derived from diuron and linuron are consistent with the 
discussion on the adsorption of diuron and linuron on different surfaces of ZnO. Electrons are localized in 
many parts throughout the molecules of diuron and linuron, e.g., oxygen atom of the carbonyl group, 
nitrogen atom of the amine group, and chlorine atoms on the aromatic ring, making them negatively 
charged. Electron withdrawal toward these high-electronegativity atoms results in positive charges on the 
adjacent atoms. Adjustment of the molecules to turn its negatively charged parts toward the zinc-
terminated surface of the conventional ZnO particles, which is uniformly positively-charged, enables the 
adsorption configuration to be planar; hence allow the attack of the hydroxyl radicals to take place on both 
sides of the molecules. Similar configuration should also be possible for the adsorption on oxygen-
terminated surface. On the other hand, the mixed-terminated surface of the ZnO nanorods is consisted of 
alternating zinc and oxygen atoms, which is unlikely to match charge distribution on the molecule of either 
diuron or linuron. Therefore, only the aliphatic side of the molecules, which contains the highest charged 
functional group, should adsorb onto the mixed-terminated surface and should be mainly attacked by the 
hydroxyl radicals. 

By nature of physical adsorption, the intermediates formed can easily desorb from the surface. As the 
residence time is prolonged, the intermediates re-adsorb and undergo further degradation until 
mineralization is achieved. The structures of the subsequent intermediates should therefore depend on the 
adsorption characteristics of the products from the prior step in the pathway. 
 

4. Conclusion 
 
Residual phenyl urea herbicides in water could be successfully degraded by photocatalytic degradation on 
zinc oxide. However, the degradations on different surfaces are markedly different, both in rate of the 
reaction on the surface and the degradation pathway, i.e, the structures of the intermediates formed. 
Adsorption configuration on the surface of the catalyst, which is surface dependent, is a crucial factor 
affecting the degradation. The degradation takes place on both aliphatic and aromatic sides of diuron and 
linuron when the ZnO catalyst is consisted mainly by polar surfaces. On the other hand, on the non-polar 
mixed-terminated surface, only the aliphatic side is attacked by hydroxyl radicals. Hence, the structure of 
the catalyst is a crucial factor in determining the dominant degradation pathway. 
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