

Article

Automatic Transformation of Ordinary Timed Petri
Nets into Event-B for Formal Verification

Chalika Saksupawattanakula and Wiwat Vatanawoodb,*

Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University,
Bangkok 10330, Thailand
E-mail: achalika.Sa@student.chula.ac.th, bwiwat@chula.ac.th (Corresponding author)

Abstract. The behavioral correctness of real-time software systems relies on both the results
of its computation and the clock times when the results are produced. Obviously, formal
verification of the safety and correctness of real-time software specification from the very
beginning of the software design phase obviously helps us reduce the development efforts.
From a practical point of view, the timed Petri net is commonly used to graphically model
and illustrate the view of the timed behavior of real-time software systems, which is a good
basis for an understanding of a model. However, there is a lack of development process
software for the simulation of a timed Petri net. Alternatively, formal verification using the
Event-B specification method provides an efficient automatic theorem proving tool which
is focused on the development process and provides an efficient verified internal data of
software. Unfortunately writing an Event-B specification from scratch is still difficult and a
mathematical logic background is needed. In this paper, we propose an automatic
transformation of ordinary timed Petri nets into Event-B specifications. The basic notations
in the ordinary timed Petri nets are considered and mapped into the code fragments of
Event-B. The final resulting Event-B codes are generated in the well-formed format which
is required and successfully verified by an Event-B prover called a Rodin tool.

Keywords: Timed Petri nets, Event-B, formal verification, real-time software system.

ENGINEERING JOURNAL Volume 22 Issue 4
Received 19 February 2018
Accepted 15 May 2018
Published 31 July 2018
Online at http://www.engj.org/
DOI:10.4186/ej.2018.22.4.161

DOI:10.4186/ej.2018.22.4.161

162 ENGINEERING JOURNAL Volume 22 Issue 4, ISSN 0125-8281 (http://www.engj.org/)

1. Introduction

The software industry realizes that the verification of a software design beforehand could yield the reduction
of development time and cost. Especially for the real-time and critical software systems, the extra safety
criteria should be provided and checked whether the software design satisfies the needs of the user, in
addition to its correctness. Recently, formal verification of the real-time software has becomes popular and
is thought to be a better choice to perform the exhaustive checking of the timed behaviors, while the real-
time software testing is only conducted during the design phase. The formal verification provides a proving
process to ensure the targeting of safety properties using the mathematical approaches. Most of the formal
verification begins with abstracting the real world system into its abstract representative, called the formal
model.

Several formal specification languages have been proposed to describe and fit the variety of formal
models. In particular, several researchers proposed the merging of the relevant formal languages to yield new
language capabilities. For example, combining the notation Z with a Petri net for model a safety-critical
system in [1], even the embedding of the Petri nets formalism into the B abstract system found in [2]. The
Petri nets formalism is common to the formal model specifications for the concurrent system, with no time
constraints in the first place. The mapping from the Petri net the B language of the B-Method [3] was also
proposed to show the possibilities of the incorporation of Petri nets and B language, while the mapping from
Event-B into Petri nets was also proposed in a one-way translation manner [4]. In this paper, we will be more
specific as to the domain of a real-time system in which the time dependent characteristics are seriously
considered. The time constraints of Event-B were proposed in [5],[6],[7] as additional timing properties to
Event-B. However, our focus on real-time systems would have to deal with the timed Petri net in particular,
not just the Petri net.

Basically, a Petri net [8] is a formal model illustrating a discrete and concurrent system and enabling both
qualitative and quantitative analysis of the system’s behavior. Several Petri net simulation tools [9] were
proposed and developed to check the validity of the Petri nets. When it comes to dealing with the clock times,
possibly with a delay, timed Petri nets were proposed [10] instead. The timed Petri nets are easy to use and
human-readable, with the graphical symbols and their simulations. In spite of its intuitive model, the
simulation approach of Petri nets is still tedious and time consuming, and an exhaustive simulation is only
possible with the timed Petri nets. The major limitation of timed Petri nets is the fact that they are still unable
to express the internal data of software and do not provide any refined framework for the software
development process. As an alternatively, we looked at Event-B, an evolution of B-Method. Event-B is a
popular formal method for system-level modeling and analysis, which supports the use of refinement to
represent a real-time system. Event-B also provides mathematical proof to verify the expected properties
instead of using simulation approach, while several theorem proving tools are developed. We also considered
the Rodin tool, which provides a mathematical logic prover and has many plug-in proof frameworks available.
However, writing an abstract model in Event-B codes from scratch is difficult and a mathematical logic
background is needed. Thus, we intend to propose an automatic transformation of a given ordinary timed
Petri net into Event-B codes, so that the real-time software system could be exhaustively verified using a
mathematical approach. Several mapping rules are proposed to systematically transform the basic notations
of the ordinary timed Petri net into Event-B code fragments, which are finally consolidated into the resulting
Event-B machine.

This paper is organized as follows. Section 1 is the introduction and section 2 describes the brief
backgrounds of the timed Petri nets and the Event-B. Then Section 3 presents our mapping rules approach
for the transformation of ordinary timed Petri nets into Event-B. Section 4 discusses our implementation of

the transformation while section 5 discusses the related work; and our conclusion is presented in section 6.

2. Background

In this section, we briefly review the background of several formal objects related to our
transformation approach such as the timed Petri nets, Event-B and its support tool, called Rodin.

DOI:10.4186/ej.2018.22.4.161

ENGINEERING JOURNAL Volume # Issue #, ISSN 0125-8281 (http://www.engj.org/) 163

2.1. Timed Petri Net

In a real-time system, every event or process consumes a certain period of time, no matter how short. The
timed Petri net is the extension of the original Petri net to cope with this duration of time for the event or
process in a real-time system, which is modelled by a transition symbol in the net. In short, the timed Petri
net provides the duration time d(t) with each transition t, where d(t) is equal to, or greater than zero.

In timed Petri net [11], there are two kinds of nodes; transition and place. These are drawn as rectangle
and circle symbols, respectively. The nodes of transitions show that the events may occur in a real-time
system; while the nodes of places represent the condition for an event to be started. Between transitions and
places, there are directed arcs associating between the ordered pairs, in which the possible flows of the net
are indicated. There is an arc linking from one pre-place to one transition and also another arc linking from
the transition to one post-place. The place preceding the transition is called pre-place, and the place following
the transition is called post-place. Arcs between two places or between two transitions are not allowed. There
is a set of tokens, with a black dot symbol, drawn on some particular places in the net. The basic notations
of the timed Petri net are shown in Fig. 1.

Fig. 1. The basic notations in the timed Petri net [12].

When any transition t fires, any token is removed from each of its pre-place and added to any token to
each of its post-place. Any distribution of the tokens on the places is called marking. A timed Petri net should
be given a specific initial marking to start the flow of the net. However, the firing of the transition t is time-
dependent in the timed Petri net. When the marking condition of a pre-place is satisfied, the firing of a
transition t would occur after a certain amount of time (specified duration) d(t). In the graphical representation
of a timed Petri net [13], the duration time of each transition is written within an angle bracket next to its
symbol, as shown in Fig. 2.

Fig. 2. An example graphic modeling of timed Petri nets.

2.1.1. Our definition of ordinary timed Petri net

In this section, we assume that the given timed Petri net is an ordinary Petri net OTPN in which each place
holds at most one token. The definitions of our ordinary Petri net are described for the sake of how to
understand the element of OTPN.

DOI:10.4186/ej.2018.22.4.161

164 ENGINEERING JOURNAL Volume 22 Issue 4, ISSN 0125-8281 (http://www.engj.org/)

Definition 1: Ordinary Timed Petri Nets
A ordinary timed Petri net is a 6-tuple OTPN = (P, T, F, V, m0, d) such that

 P is a finite set of places

 T is a finite set of transitions

 F is a set of arcs which indicating the flow relations of the net where F  (P×T)  (T×P)

 V: F → {1} is weight of the arcs indicating number of token needed to enable the transition firing

 m0: P →{0,1} is the initial marking

 d: T → N0
+ is the duration time of the transition where d(t) is the non-negative numbers being equal to

or greater than the zero of transition t

Definition 2: Pre-place and Post-place Nodes of a Transition
Given an ordinary timed Petri net OTPN = (P, T, F, V, m0, d). There are two mapping functions, preplace(t)

and postplace(t) such that preplace: T → 2P is a function indicating a subset of the pre-place nodes of a

transition, while postplace: T → 2P is a function indicating a subset of post-place nodes of a transition

according to the existing flows available in OTPN.

For example, let (p1, t1), (p2, t1), (t1, p3)F where: p1, p2, p3 P and t1 T. We have preplace(t1) = {p1,
p2} and postplace(t1) = {p3}.

Definition 3: Marking in an Ordinary Timed Petri Net
Given an ordinary timed Petri net OTPN = (P, T, F, V, m0, d). A marking in OTPN is a total function

m: P → {0, 1}. Thus the marking m0 is a given initial marking to the OTPN when the system begins its

behavioural actions.

Definition 4: Enabled Transition in an Ordinary Timed Petri Net

Given an ordinary timed Petri net OTPN = (P, T, F, V, m0, d) and a marking m in OTPN. A transition t  T

is enabled in m if m(preplace(t)) = 1. We also define a time counter u: T  0
+ for each transition t which is

initially set to zero. Whenever the transition t is enabled, the time counter u(t) begins counting up to d(t).

Definition 5: Firing Transition in an Ordinary Timed Petri Net

Given an ordinary timed Petri net OTPN = (P, T, F, V, m0, d). The transition t  T could fire if t is enabled

in m1 and the time counter u(t) = d(t). A firing transition t  T is denoted by (m1, t, m2) where m1 and m2 is the
markings in OTPN. After the firing of t the ordinary timed Petri net OTPN, the marking m1 is removed one
token then the marking m2 is added one token, and the time counter u(t) is reset to zero again. Given an
OTPN of marking m1, for each firing transition t with m(preplace(t)) = 1, the m(postplace(t)) is increased by
1 and the m(preplace(t)) is decreased by 1 consecutively to yield a new OTPN of marking m2.

2.2. Event-B

Event-B [14] is a formal framework derived from the original B Method [15] in which it supports the parallel,
distributed and reactive system, especially real-time systems. The Event-B formalism also provides a scalable
approach to system development, starting from modelling a high level abstract specification of the essential
system behaviour and critical properties and continuously doing refinements until achieving sufficiently
detailed system specifications. With this Event-B framework, it is possible to verify real-time system
properties at the early stages of the system development, by mathematical logic proofs. An Event-B model
is mainly written in an Event-B machine with its global context, as shown in Fig. 3. The Event-B machine
and its context, called Event-B code in short, usually defines a real-time system in which both structural, and
behavioural properties are described in terms of axioms, invariants, events, etc.

DOI:10.4186/ej.2018.22.4.161

ENGINEERING JOURNAL Volume # Issue #, ISSN 0125-8281 (http://www.engj.org/) 165

Fig. 3. The structure of an Event-B model [14].

Several formal verification tools are developed to process and prove the Event-B code. The Rodin
platform [16] provides support for modelling and verifying Event-B codes with automatic features of proofs.
The basic proof obligations are automatically generated by the Rodin tool and proven to ensure the validity
of user defined axioms, invariants, and the events along with their guards and actions. Several plug-in provers
are available, such as ProB [17], SMT [18], Camille Editor [19], and etc., in order to perform other model
checking approaches. An example of Event-B model of a simple traffic lights system is shown in Fig. 4.

Fig. 4. An example of Event-B model of the simple traffic lights system [20].

2.2.1. Our definition of Event-B model

The definition of our Event-B model EBM is described for the sake of how to understand the element of
EBM.

Definition 6: Event-B Model
An Event-B model is a tuple EBM = (S, C, A, V, I, E, INIT) such that

 S is a set of model sets or types

 C is a set of model constants

 A is a set of model axioms

 V is a set of variables in model

 I is a set of model invariants

 E is a set of model events

 INIT is the initial action when the model begin its executing

We refer to ‘an Event-B model EBM’ as a convenient way to express our mapping rules. However, each
element in an EBM should be written in a well-formed statement which is already defined by Event-B code
syntax [21]. For example, model sets, model constants, and variables are commonly listed names, while,
axioms and invariant are written as a set of logical conditions and the model events are written as a set of
any-where-then clauses.

DOI:10.4186/ej.2018.22.4.161

166 ENGINEERING JOURNAL Volume 22 Issue 4, ISSN 0125-8281 (http://www.engj.org/)

3. Proposed Transformation Scheme

In this section, we propose our transformation scheme to generate Event-B codes from the given timed Petri
nets. A set of mapping rules are proposed to generate the Event-B code fragments from timed Petri net
notations. We assume that the given timed Petri net is an ordinary timed Petri net in which each place holds
at most one token. One of limitation of this paper is that a token holds in each place. It is simple to abstract
all its function with set theory. The definitions of our ordinary Petri net and Event-B model are described
for the sake of how to understand our transformation mapping rules.

3.1. Our Timed Petri Net to Event-B Model Mapping Rules

The Event-B model is composed of two parts: the static part which is specified by the CONTEXT and the
dynamic part which is represented by the MACHINE. Firstly, we apply mapping rules #1 - #4 to transform
the structure of the ordinary timed Petri net OTPN into the CONTEXT part. While the rest of mapping
rules #5 - #7 are applied to transform the behaviors of the OTPN consecutively. The resulting CONTEXT
and MACHINE parts are written commonly in well-formed statements of Event-B code syntax.

Mapping Rule 1: Transforming Places
Given an ordinary timed Petri net OTPN = (P, T, F, V, m0, d) and let the target Event-B model be EBM=
(S, C, A, V, I, E, INIT), the following steps would be conducted.

1) Add “PLACE” into model sets S, so that “PLACE” S.

2) Add each p  P into model constants C, so that p  C.

3) Add each p  P into model axioms clause as “partition(PLACE, {p} …)”  A.

Mapping Rule 2: Transforming Transitions
Given an ordinary timed Petri net OTPN = (P, T, F, V, m0, d) and let the target Event-B model be EBM =
(S, C, A, V, I, E, INIT), the following steps would be conducted.

1) Add “TRANSITION” into model sets S, so that “TRANSITION”  S.

2) Add each t  T into model constants C, so that t  C.
3) Add “hold”, “enabled”, and “firing” into model constants C.
4) Add “PREPL” and “POSTPL” into model constants C.

5) Add each t  T into model axioms clause as “partition(TRANSITION, {t} …)”  A.
6) Add “STATUS” into model sets S.
7) Add the “partition(STATUS, {hold}, {enabled}, {firing})” clauses in to model axiom A.

8) Add the “PREPL  TRANSITION ↔ PLACE” clause into model axiom A.

9) Add the “POSTPL  TRANSITION ↔ PLACE” clause into model axiom A.

10) Generate a new set of preplace (t, p) PREPL where t  T, p  P, preplace(t) = p, and add this
preplace PREPL into model axioms.

11) Generate a new set of postplace (t, p) POSTPL where t  T, p  P, postplace(t) = p, and add this
postplace POSTPL into model axioms.

Mapping Rule 3: Transforming Arcs
Given an ordinary timed Petri net OTPN = (P, T, F, V, m0, d) and let the target Event-B model be EBM =
(S, C, A, V, I, E, INIT), the following steps would be conducted.

1) Generate a new set of inflow (p, t) INFLW where p  P, t  T, (p, t)  F, and add this inflow

INFLW into model axioms so that INFLW  A.

2) Generate a new set of outflow (t, p) OUFLW where p  P, t  T, (t, p)  F, and add this outflow

OUFLW into model axioms so that OUFLW  A.
3) Add “WEIGHT” into model constants C.

4) Add the “WEIGHT  N”, “WEIGHT = 1” clauses in to model axiom A.

DOI:10.4186/ej.2018.22.4.161

ENGINEERING JOURNAL Volume # Issue #, ISSN 0125-8281 (http://www.engj.org/) 167

Mapping Rule 4: Transforming Duration Time of Transitions
Given an ordinary timed Petri net OTPN = (P, T, F, V, m0, d) and let the target Event-B model be EBM =
(S, C, A, V, I, E, INIT), the following steps would be conducted.

1) Add “durationTime” into model constants C.
2) Generate a new set of duration time d(t) DTIME, such that its members are denoted as (t, N) where

t  T, N is the non-negative numbers being equal to or greater than the zero of transition t.

3) Add the “durationTime  TRANSITION  N” clause into model axiom A.

4) Add this DTIME into model axioms so that DTIME  A.

Mapping Rule 5: Transforming Variables and Invariants
Given an ordinary timed Petri net OTPN = (P, T, F, V, m0, d) and let the target Event-B model be EBM =
(S, C, A, V, I, E, INIT), we provide a rigid Event-B code fragment of model variables and model invariants
as follows.

1) Add “s_PLACE”, “s_TRANSITION”, “s_MARKING”, “STAT”, “TIK”, and “postPlace” into
model variables V so that we could handle the behaviours of the net.

2) Add the following invariant clauses into model invariants, “s_PLACE  PLACE”,

“s_TRANSITION  TRANSITION”, “s_MARKING  PLACE  Z”, “STAT 

TRANSITION  STATUS”, “TIK  s_TRANSITION  N”, and “postPlace  s_PLACE” so
that the all model variables in V are defined rigidly.

Mapping Rule 6: Transforming INITIALISATION Events
Given an ordinary timed Petri net OTPN = (P, T, F, V, m0, d) and let the target Event-B model be EBM =
(S, C, A, V, I, E, INIT), the following steps would be conducted.

1) Add “s_PLACE := PLACE” and “s_TRANSITION := TRANSITION” clauses into Initial action
part INIT.

2) Generate a new set of marking (p, q) s_MARKING where p  P, q = m0(p) , and add this marking
s_MARKING as a clause in INIT.

3) Generate a new set of state (t, u) STAT where t  T, u  {hold}, and add this state STAT as a clause
in INIT.

4) Generate a new set of tick (t, 0) TIK where t  T, and add this TIK as a clause in INIT.

5) Add “postPlace: = ∅” clause into INIT so that the postPlace is reset to empty set.

Mapping Rule 7: Transforming Dynamic Events
Given an ordinary timed Petri net OTPN = (P, T, F, V, m0, d) and let the target Event-B model be EBM =
(S, C, A, V, I, E, INIT), we propose a rigid Event-B code fragment of model events. We propose to add
“Enabled”, “Counting”, “Fire”, “resetIndividualTransition”, “resetConcurrentTransition”, “removeToken”,
and “e_DynamicTransition” into model events E as follows.

1) The behaviour of any enabled transition tt is described with the following “Enabled” event. The
guards are defined with two precondition clauses. Firstly, the guard grd1 ensures that any transition tt is a
member of s_TRANSITION, place p is a member of PREPL[{tt}] and STAT(tt) must hold. Secondly, the
guard grd2 ensures that place p is a member of s_MARKING, s_MARKING(p) has a number of tokens that
is equal or greater than WEIGHT and no firing transition occurred, denoted by an empty set of post-Place.
Whenever both two precondition guards, grd1 and grd2, are true then a STAT(t) is enabled. The “Enabled”
event is shown as follows.

“event Enabled
 any p t
 where

 grd1  tt·(tt s_TRANSITION (p∈ PREPL[{tt}]) (STAT(tt) = hold) tt = t)

 grd2 (pdom(s_MARKING)) (s_MARKING(p) ≥ WEIGHT) (postPlace = ∅)
 then

 act1 STAT(t) ≔ enabled
 end”

DOI:10.4186/ej.2018.22.4.161

168 ENGINEERING JOURNAL Volume 22 Issue 4, ISSN 0125-8281 (http://www.engj.org/)

2) The time counter is described with the following “Counting” event. Similarly, the guards are defined

with two precondition clauses. Firstly, the guard grd1 ensures that any transition t is a member of
s_TRANSITION and STAT(t) is also enabled. Secondly, the guard grd2 ensures that TIK(t) is less than the
duration of time d(t). Whenever both of the two precondition guards, grd1 and grd2, are true then TIK(t) is
increased by one. The “Counting” event is shown as follows.

“event Counting
 any t
 where

 grd1 (ts_TRANSITION) (STAT(t) = enabled)
 grd2 (TIK(t) < durationTime(t))
 then

 act1 TIK(t) ≔ TIK(t) +1
 end”

3) The behaviour of any fired transition t is described with the following “Fire” event. The guards are

defined with two precondition clauses. Firstly, the guard grd1 ensures that any transition t is a member of
s_TRANSITION, TIK(t) is equal to the durationTime(t) and STAT(t) is enabled. Secondly, the guard grd2
ensures that place p is a member of s_PLACE, place p is a member of PREPL[{t}] and postPlace[{t}] is a
subset of s_PLACE. Whenever both of the two precondition guards, grd1 and grd2, are true then a STAT(t)

is firing and POSTPL of transition t is added into the set of postPlace. The “Fire” event is shown as follows.

“event Fire
 any t p
 where

 grd1 (t s_TRANSITION) (TIK(t) = durationTime(t)) (STAT(t) = enabled)

 grd2 (p s_PLACE) (p ∈ PREPL[{t}]) (POSTPL[{t}] s_PLACE)

 then

 act1 STAT(t) ≔ firing

 act2 postPlace ≔ postPlace POSTPL[{t}]
 end”

4) The behaviour of any time counter and status of a transition t would be reset as described with the
following “resetIndividualTransition” event. The guards are defined with two precondition clauses. Firstly,
the guard grd1 ensures that any transition t is a member of dom(TIK), STAT(t) is firing, a set of postPlace is
empty, and POSTPL[{t}] is a subset of s_PLACE. Secondly, the guard grs2 ensures that place p is a member
of s_PLACE and place p is a member of PREPL[{t}]. Whenever both of the two precondition guards, grd1
and grd2, are true then a STAT(t) is set to status hold and TIK(t) is reset to zero. The
“resetIndividualTransition” event is shown as follows.

“event resetIndividualTransition
 any t p
 where

 grd1 (t dom(TIK)) (STAT(t) = firing) (postPlace =∅) (POSTPL[{t}] s_PLACE)

 grd2 (ps_PLACE) (p ∈ PREPL[{t}])
 then

 act1 STAT(t) ≔ hold

 act2 TIK(t) ≔ 0
 end”

5) The behavior of any time counter and status of a transition t would be reset as described with the
following “resetConcurrentTransition” event. The guards are defined with two precondition clauses. Firstly,
the guard grd1 ensures that any transition t is a member of s_TRANSITION, STAT(t) is also enabled, TIK(t)
is not of equal durationTime(t), and place p is a member of PREPL[{t}]. Secondly, the guard grs2 ensures

DOI:10.4186/ej.2018.22.4.161

ENGINEERING JOURNAL Volume # Issue #, ISSN 0125-8281 (http://www.engj.org/) 169

that place p is a member of s_PLACE and s_MARKING(p) token is zero. Whenever both of the two
precondition guards, grd1 and grd2, are true then a STAT(t) is set to status hold and TIK(t) is reset to zero.
The “resetConcurrentTransition” event is shown as follows.

 “event resetConcurrentTransition
 any t p
 where

 grd1 (ts_TRANSITION) (STAT(t) = enabled) (TIK(t) ≠ durationTime(t))

  (pPREPL[{t}])

 grd2 (ps_PLACE) (s_MARKING(p) = 0)
 then

 act1 STAT(t) ≔ hold”

 act2 TIK(t) ≔ 0
 end”

6) The tokens of the pre-places of any transition t are removed as described with the following

“removeToken” event. The guards are defined with two precondition clauses. Firstly, the guard grd1 ensures
that pln is a member of the PREPL[{t}], the POSTPL[{t}] is a subset of s_PLACE, and the set of postPlace
is an empty set. Secondly, the guard grs2 ensures that pIn is a member of s_PLACE, the amount of the
number of s_MARKING(pIn) is greater than zero, and STAT(t) is firing. Whenever both of the two
precondition guards, grd1 and grd2, are true then the number of tokens in s_MARKING(pIn) is decreased
by WEIGHT. The “removeToken” event is shown as follows.

“event removeToken
 any t pIn
 where

 grd1 (pInPREPL[{t}]) (POSTPL[{t}] s_PLACE) (postPlace = ∅)

 grd2 (pIns_PLACE) (s_MARKING(pIn) > 0) (STAT(t) = firing)
 then

 act1 s_MARKING(pIn) ≔ s_MARKING(pIn) − WEIGHT
 end”

7) The tokens of the post-places of any fired transition t are added as described with the following
“e_DynamicTransition” event. The guards are defined with three precondition clauses. Firstly, the guard grd1
ensures that transition t is a member of s_TRANSITION, while pOut is a member of s_PLACE, and STAT(t)
is firing. Secondly, the guard grs2 ensures that postPlace is not an empty set and pOut is a member of
postPlace. Thirdly, the guard grs3 ensures that pln is a member of s_PLACE and pln is a member of
PREPL[{t}]. Whenever all of the three precondition guards, grd1, grd2, and grd3 are true then the number
of tokens in s_MARKING(pIn) are increased by WEIGHT and the POSTPL of transition t is removed in
the set of postPlace. The “e_DynamicTransition” event is shown as follows.

“event e_DynamicTransition
 any t pIn pOut
 where

 grd1 (ts_TRANSITION) (pOuts_PLACE) (STAT(t) = firing)  (pOutPOSTPL[{t}])

 grd2 (postPlace ≠ ∅) (pOut  postPlace)

 grd3 (pIns_PLACE) (pInPREPL[{t}])
 then

 act1 s_MARKING(pOut) ≔ s_MARKING(pOut) + WEIGHT

 act2 postPlace ≔ postPlace ∖ {pOut}
 end
end”

DOI:10.4186/ej.2018.22.4.161

170 ENGINEERING JOURNAL Volume 22 Issue 4, ISSN 0125-8281 (http://www.engj.org/)

4. Implementation

This section describes our propose methodology of transformation which consists of three main steps as
shown in Fig. 5. Indeed, an automatic transformation tool is very important to facilitate the generation of
Event-B, so we intend to develop the transformation tool within an Eclipse environment using Java language.
Firstly, we expect an input of ordinary timed Petri net OTPN written in terms of the well-formed structure
of the XML file format. The notations of OTPN are thoroughly extracted. Secondly, our proposed mapping
rules are exploited to generate the corresponding Event-B model EBM, including CONTEXT part and
MACHINE part as to represent both structural and behavioural properties of OTPN respectively. The Event-
B code fragments are consolidated and elaborated to comply with the Event-B code syntax, so that the
resulting final model would be complete and ready to the next verification step. Thirdly, the resulting Event-
B model would be evaluated for its correctness and consistency, using the relevant proof obligations. The
proof obligations would be determined from the original properties of OTPN, such as liveness, safetyness,
and even the fairness properties written in linear temporal logic formula.

Fig. 5. Our proposed methodology of transformation.

4.1. Import OTPN and Extract Its Notations

In order to demonstrate how to import the input OTPN, we designed a simple and readable XML schema
with only three main elements: <Places> indicating a place, <Transitions> indicating a transition, and
<Arcs> which represents an arc. The <Places> contains the attributes for the place id, name, marking (number
of carrying token), and type. The <Transitions> contains the attributes for the transition id, name, duration time,
and type. While, the <Arcs> contains the attributes for the arc id, type, fromNode, and toNode. An example of
the XML file of the OTPN is shown in Fig. 6. According to the definition of the ordinary timed Petri net, it
is common to verify the well-formedness of the input XML of an OTPN and promptly alert the error found
beforehand. The XML form of OTPN is more practically traced to extract the collection of the places,
transitions, and arcs with the adequate information in order to apply the mapping rules in the next step. To
illustrate the result of this step, the collections of notations are shown in Fig. 7 regarding the definition of
OTPN = (P, T, F, V, m0, d).

DOI:10.4186/ej.2018.22.4.161

ENGINEERING JOURNAL Volume # Issue #, ISSN 0125-8281 (http://www.engj.org/) 171

Fig. 6. An example of the XML file of the OTPN.

Fig. 7. An example of the resulting collections of notations found in the OTPN.

4.2. Generate Event-B Code Fragments by Using Mapping Rules

According to a sample of an ordinary timed Petri net OTPN in Fig. 2, the collections of five places and five
transitions with defined duration times or delay times, and one initial marking are extracted. In this step, our
mapping rules are exploited to generate the corresponding Event-B model written in CONTEXT and
MACHINE parts. As we mentioned earlier, the CONTEXT part describes the structure of the OTPN and
the MACHINE part describes the behaviours of the OTPN. We apply mapping rules # 1 - #4 to generate
the model sets, model constants, and model axioms of the CONTEXT from the places, transitions, arcs, and
duration time of OTPN, as shown in Fig. 8.

Fig. 8. An example of the generated CONTEXT part of Event-B model.

Element Type
Ordinary timed Petri net

OTPN =(P, T, F, V, m0, d)

<Places> P = {p1,p2,p3}

 <place id="PL_1" name="p1" initialMarking="1" type="node"/> m0 = (1,0,0)

 <place id="PL_2" name="p2" initialMarking="0" type="node"/>

 <place id="PL_3" name="p3" initialMarking="0" type="node"/>

</Places>

<Transitions> T = {t1,t2}

 <Transition id="TR_1" name="t1" durationTime="2" type="node"/> D = {(t1,2),(t2,4)}

 <Transition id="TR_2" name="t2" durationTime="4" type="node"/>

</Transitions>

<Arcs> F = {(p1,t1),(p2,t2),

 <Arc id="in_1" type="inputPlace" fromNode="PL_1" toNode ="TR_1"/> (t1,p2),(t2,p3)}

 <Arc id="in_2" type="inputPlace" fromNode="PL_2" toNode ="TR_2"/> V = {(p1,t1)1,(p2,t2)1,

 <Arc id="out_1" type="outputPlace" fromNode="TR_1" toNode ="PL_2"/> (t1,p2)1,(t2,p3)1}

 <Arc id="out_2" type="outputPlace" fromNode="TR_2" toNode ="PL_3"/>

</Arcs>

Event-B code

1 context c_TransformationOTPN2EBM

2 sets PLACE TRANSITION STATUS

3
constants p1 p2 p3 p4 p5 t1 t2 t3 t4 t5 hold enabled

 firing delay weight pre post

4 axioms

5 axm1 partition(PLACE,{p1},{p2},{p3},{p4},{p5})

6 axm2 partition(TRANSITION,{t1},{t2},{t3},{t4},{t5})

7 axm3 partition(STATUS,{hold},{enabled},{firing})

8 amx4 PREPL ∈ PLACE ↔ TRANSITION

9 axm5 PREPL = {p1↦t1,p2↦t2,p3↦t3,p4↦t4,p5↦t5}

10 axm6 POSTPL ∈ TRANSITION ↔ PLACE

11 axm7 POSTPL = {t1↦p2,t2↦p3,t2↦p4,t3↦p5,t4↦p5,t5↦p1}

12 axm8 weight ∈ ℕ

13 axm9 weight = 1

14 axm10 delay ∈ TRANSITION → ℕ

15 axm11 delay = {t1↦2,t2↦4,t3↦2,t4↦1,t5↦5}

16 End

DOI:10.4186/ej.2018.22.4.161

172 ENGINEERING JOURNAL Volume 22 Issue 4, ISSN 0125-8281 (http://www.engj.org/)

Afterward, the rest of the mapping rules #5 - #7 are used to generate the variables, INITIALISATION
event, and several rigid events of “Enabled”, “Counting”, “Fire”, “resetIndividualTransition”,
“resetConcurrentTransition”, “removeToken”, and “e_DynamicTransition” for MACHINE part from the
semantic of the OTPN, as shown in Fig. 9.

Fig. 9. An example of the generated MACHINE part of Event-B model.

4.3. Evaluate the Resulting Event-B Code

In this section, we demonstrate the evaluation of the resulting Event-B code in two steps. Firstly, the Event-
B code would be verified for its correctness and consistency among every single statement of the source code
by using the proof obligations. With the Rodin tool, this verification step would be commonly done.
Secondly, we could selectively verify some essential safety properties of the system using an open source
plug-in to the Rodin tool, called the ProB plug-in.

4.3.1. Verify the correctness and consistency of the Event-B code

Using the Rodin tool, the mathematical proof is automatically possible. The proof statistics of the resulting
Event-B code are in Table 1. All the proof obligations (POs) for the eight events and six invariants generated

DOI:10.4186/ej.2018.22.4.161

ENGINEERING JOURNAL Volume # Issue #, ISSN 0125-8281 (http://www.engj.org/) 173

earlier are successfully proved by the Rodin prover and the proof statistics are listed. The total results of the
resulting Event-B code is 41 POs, within which 41 POs (100%) are proved automatically by the Rodin prover
and if there is no interactively discharge that is not proven automatically, a user interface allows interactive
proof steps.

Table 1. Proof statistics of our generated Event-B code.

Element
Type

Element Name
Number of

proof
obligations

Automatically
discharged

Interactively
discharged

Percentage
%

Event

Enabled 3 3 0 100
Counting 4 4 0 100

Fire 3 3 0 100
INITIALISATION 3 3 0 100

resetIndividualTransition 3 3 0 100
resetConcurrentTransition 4 4 0 100

removeToken 3 3 0 100
e_DynamicTransition 4 4 0 100

 inv1 0 0 0 100
Invariant inv2 0 0 0 100

 inv3 3 3 0 100
 inv4 5 5 0 100
 inv5 4 4 0 100
 inv6 2 2 0 100
 Total 41 41 0 100%

4.3.2. Verify the essential safety properties of Event-B model

The safety property ensures that bad or unwanted things ever happen. The essential safety properties are the
invariants of the system. In short, we would ensure that all invariants defined should always hold. In Fig. 10,
the result of the Rodin tool shows that no violation of the invariants of the system written in Event-B code
appears.

Fig. 10. The violation of the system invariants is not found.

Moreover, temporal logic formula (LTL) has found an important application in formal verification, where

it is used to verify propositions qualified in terms of time of hardware or software systems. Consequently,

we show additional safety properties written in linear temporal logic LTL formula regarding the safety of the
local clocks of each transition, “The local clocks of the transitions never count beyond their assigned duration
times”. The LTL clause is shown as follows.

F {TIK(t1) <= durationTime(t1) & TIK(t2) <= durationTime(t2)
& TIK(t3) <= durationTime(t3) & TIK(t4) <= durationTime(t4)

 & TIK(t5) <= durationTime(t5)}.

The F is the temporal operator called “Finally”. While TIK(t) is the counting of local clock of transition
t and durationTime(t) is the duration time assigned to transition t.

DOI:10.4186/ej.2018.22.4.161

174 ENGINEERING JOURNAL Volume 22 Issue 4, ISSN 0125-8281 (http://www.engj.org/)

5. Related Work

There have also been researchers that combined Event-B with other formal methods for the specification of
systems, primarily with the Petri net. The work [2] proposes the embedding techniques for embedding of
Petri nets formalisms into the B abstract. . They outline the embedding, which enables one to conjointly use
Petri nets and Event-B in the same system development. The essential difference between our approach and
this work is that we translate ordinary timed Petri net to the Event-B model, so that each behavior is tied to
a separate event. This is more natural and usable for real-time systems. They use the Atelier B version of the
Event-B syntax, which is much closer to the classical B-language. However, the Atelier B prover is usually
more difficult to use in our approach. In [3] we propose a method of mapping PNs to B-language that is
useful for the incorporation of Petri net designs in a software application developed by the B-Method.
However, the B-Method was designed for the development of sequential systems, so it is limited when used
to check concurrent systems. But, while there is considered to be a strong relation between the computational
concepts of Petri nets and Event-B; it will also be worthwhile to explore the possibilities of incorporation of
transformed PN into Event-B models. The work [7] proposes a formal model of timed migrating and
communicating process as provided by the TiMo calculus. They translate the specifications of TiMo to Event-
B, which transfers additional timing property to Event-B. They analyze the software systems by using the
Rodin tool for the theorem proving and model checking techniques. However, they are not aware of Event-
B timing constraints; they implement local clock and relative time suites instead of global clock and absolute
time. The case study in [22] is similar. Transformation is used in a railway safety-related. The authors translate
a Colored Petri net CPN specification to the Event-B language by using the Altelier syntax. The B
specification uses a special machine that implements multi-sets and the purpose of this transformation is a
further development of the specified system.

6. Conclusion

This paper proposes an alternative to just automatically generating the Event-B model EBM from a given
ordinary timed Petri net OTPN. Typically, it is common to abstract a real-time system using OTPN net, and
the net simulation is the only the practical way to evaluate, and verify its critical properties. While the
simulation technique is tedious and time consuming to conduct for the verification of a real-time system, the
theorem proving and model checking are considered. We believe that since the Event-B model and its model
prover tools have recently become popular for critical system development, new ideas are required. We
propose a set of mapping rules of automatic transforming a commonly used OTPN net into Event-B model,
without a mathematical background for writing an Event-B specification. The time dependent mechanism
has been exploited for the Event-B model using the counting of local clocks for every single transition found
in OTPN. The structural and behavioral parts of the OTPN have been transformed into the CONTEXT part
and MACHINE part of Event-B codes respectively. The resulting Event-B code is syntactically well-formed.
Moreover, the proof of its correctness, consistency and essential safety properties are demonstrated by using
the Rodin tool with the additional plug-in called ProB. As future work, we plan to cover in our Event-B
model some of the ordinary timed Petri net as the additional priority of a transition fired as define in [11].
This extension became necessary in order to support the specification of priority-based schedules as used in
real-time systems. This can be integrated into our algorithm of mapping rules as an extra refinement.

References

[1] M. H. Monika Heiner, “Modeling safety-critical systems with Z and Petri nets,” in SAFECOMP, Berlin,

Heidelberg, 1999, pp. 361-374.
[2] J. C. Attiogbé, “Semantic Embedding of Petri Nets into Event-B,” in International IM_FMT, Dusseldorf,

2009.
[3] S. Korecko, “Petri Nets to B-language transformation in software development,” Acta Polytechnica

Hungarica, vol. 11, no. 6, 2014.
[4] B. M. K. Mohamed Garoui, “The EventB2PN Tool: From Event-B specification to Petri Nets through

model transformation,” in 015 IEEE/ACIS 16th International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (SNPD), Takamatsu, 2015.

DOI:10.4186/ej.2018.22.4.161

ENGINEERING JOURNAL Volume # Issue #, ISSN 0125-8281 (http://www.engj.org/) 175

[5] D. M. R. Dominique Cansell, “Time constraint patterns for Event B development,” in International
Conference of B Users, Berlin, 2006.

[6] M. W. L. T. Faezeh Siavashi, “Modeling critical systems with timing constraints in Event-B,” in
International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing, 2013, vol. 4, pp. 70-72.

[7] T. S. H. S. Gabriel Ciobanu, “From TiMo to Event-B: Event-driven timed mobility,” in 2014 19th
International Conference on Engineering of Complex Computer Systems, Tianjin, China, 2014.

[8] B. W. Choi, “Petri net approaches for modelling, controlling and validating flexible manufacturing
systems,” Ph.D. Dissertations, no. 10687, Industrial and Manufacturing Systems Engineering, Iowa
State University Capestones, 1994.

[9] Petri Nets Tools Database Quick Overview [Online]. Available: https://www.informatik.uni-
hamburg.de/TGI/PetriNets/tools/quick.html

[10] C. Ramchandani, “Analysis of asynchronous concurrent systems by Timed Petri nets,” Massachusetts
Institute of Technology, Cambridge, MA, USA, 1974.

[11] L. Popova-Zeugmann, Time and Petri Nets. Berlin, Germany: Springer, 2013.
[12] G. Callou, P. Maciel, D. Tutsch, J. Araújo, J. Ferreira and R. Souza, “A Petri Net-based approach to the

quantification of data center dependability,” in Petri Nets - Manufacturing and Computer Science. InTech,
2012.

[13] M. Werner, L. Popova-Zeugmann, and J. Richling, “A method to prove non-reachability in priority
duration Petri nets,” Fundamenta Informaticae, vol. 61, no. 3-4, pp. 351-368, 2004.

[14] J.-R. Abria, Modeling in Event-B System and Software Engineer. Cambridge University Press, 2010.
[15] J.-R. Abrial, The B-Book—Assigning Programs to Meanings Cambridge University Press, 2005.
[16] M. J. M. B. Covers Rodin, Rodin User’s Handbook, M. Jastram, Ed. 2012.
[17] The ProB Animator and Model Checker, Heinrich-Heine-University, Institut für Software und

Programmiersprachen. [Online]. Available: https://www3.hhu.de/stups/prob/index.php/Main_Page
[18] P. F. G. L. V. David Déharbe, “SMT solvers for Rodin,” in Abstract State Machines, Alloy, B, VDM, and

Z - Third International Conference, ABZ 2012, Pisa, Italy, June 18-21, 2012. Proceedings, Springer Berlin
Heidelberg, 2012, pp. 194-207.

[19] University of Düsseldorf, Camille Editor [Online]. Available: http://wiki.event-
b.org/index.php/Camille_Editor

[20] K. Robinson, “Refinement,” in System Modelling & Design Using Event-B. University of New South Wales,
2010.

[21] D. Cansell and D. Méry, “Tutorial on the event-based B method,” Paris, 2006.
[22] T. Kiss and K. T. Janosi-Rancz, “Developing railway interlocking systems with session types and Event-

B,” in 2016 IEEE 11th Int. Symp. Appl. Comput. Intell. Informatics, 2016, pp. 93–98.

