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Abstract. This paper studies a two-level inventory system with one warehouse and 𝑁 
retailers under seasonal demand.  All locations apply periodic review base-stock policy with 
echelon stock concept.  The objective is to determine an inventory policy with the minimum 
inventory cost respected to required service level.  Three ways to determine inventory 
policies are proposed which are upper, lower and EOQ alternatives.  Among these 
alternatives, it is found that upper-alternative policies tend to give the lowest cost which is 
around 17% lower than other policies.  EOQ-alternative policies give the lowest cost in 
some instances with zero ordering cost.  However, lower-alternative policies lead to the 
lower demand loss, its highest average loss in one instance is 0.07% while other policies’ loss 
can be as high as 0.22%. 
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1. Introduction 
 
Managing inventory in a multi-echelon system is a very complex problem as it leads to a lot of decisions on 
many activities and constraints, i.e. what, how much, and when items should be stored at each location, i.e. 
retailers and warehouse or transported from warehouse to each retailer.   

This paper focuses on an inventory system with a single warehouse and two retailers under seasonal 
demand.  This system is a 2-echelon inventory system whose demand only occurs at retailers.  Retailers are 
supplied by the warehouse and the warehouse is supplied by external suppliers.  All locations are replenished 
with known lead time.  The system is illustrated in Fig. 1.  In the system, items are stored at both warehouse 
and retailers.  The demand which is not satisfied by on-hand inventory is considered as demand loss. 
 

 
 
Fig. 1. An overview of the inventory system. 
 

Demand is assumed to be seasonal without trend and fluctuating within a cycle of a certain span of 
periods.  The demand pattern repeats itself cycle after cycle and, as there is no trend, the total demand per 
cycle is assumed to be stationary.  Seasonal demands can occur as results from natural force or human 
decisions [1].  For example, the demand of skiing equipment is driven by weather conditions.  On the other 
hand, department store sales are influenced by holidays and school calendars, which are based on human 
decision [2].  Dealing with seasonal demand as if it is stationary demand can lead to shortage or high holding 
cost.  For example, in Table 1, system A calculates reorder point and order-up-to point by treating demand 
stationary with an average of 300 units/period.  As an order is placed at the end of period and it will arrive 
at the end of next period, items are backlogged in periods 3,4 and 5. System B raises reorder and order-up-to 
points by 300 units to avoid shortage so there is no backlog but the total holding item is increased to 4,164 
units.  On the other hand, system C calculates ordering policy by considering seasonal demand.  This policy 
leads to no backlog with the total holding item of 3,408 which is lower than system B.  When demand pattern 
is clearly seasonal.  If the ordering policy is developed without taking care of this seasonal pattern, it can lead 
either to shortage as system A or high holding cost as system B. 

This paper considers the system operated under periodic review basis using (𝑅, 𝑠, 𝑆) or periodic review 

base-stock policy in which inventory level is reviewed every 𝑅 periods and when the level reaches 𝑠 or lower, 

an order must be placed to raise the inventory level back to equal or higher than 𝑆.  The system controls 
inventory with echelon stock concept where each location makes its own decision.  Each retailer knows its 
own inventory information while the warehouse can access information of every location.  The objective of 
this paper is to develop an approach for determining a proper inventory policy for each location to minimize 
the total inventory cost. 

The remainder of this paper is organized as follows.  Section 2 reviews the literature related to multi-
echelon system. Section 3 presents a problem description.  Section 4 describes the methodology to determine 
ordering policies.  Section 5 presents results and discussions.  Finally, section 6 concludes and suggests future 
research extensions. 
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Table 1. The difference between treating demand as stationary and seasonal patterns. 
 

S
y
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 A
 

Reorder 300        

Order-up-to 600        

Period 0 1 2 3 4 5 6 Total 

Demand  264 144 360 432 264 144  

on-hand inventory 600 336 192 240 168 336 192 2064 

order  0 408 360 432 0 408  

backlogged     0 -168 -192 -96 0   

S
y
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e
m

 B
 

Reorder 600        

Order-up-to 900        

Period 0 1 2 3 4 5 6 Total 

Demand  264 144 360 432 264 144  

on-hand inventory 900 636 492 540 468 636 492 4164 

order  0 408 360 432 0 408  

backlogged     0 0 0 0 0   

S
y
st

e
m

 C
 

Reorder 432        

Order-up-to 792        

Period 0 1 2 3 4 5 6 Total 

Demand  264 144 360 432 264 144  

on-hand inventory 792 528 384 432 360 528 384 3408 

order  0 408 360 432 0 408  

backlogged     0 0 0 0 0   

 

2. Literature Review 
 
A multi-echelon system is more complex than a single-echelon system because demand at higher echelon, i.e. 
warehouse, is dependent on demand at lower echelons, i.e. retailers.  Demand at warehouse is not directly 
required by customers but it is required by retailers to serve customers.  When a warehouse manager makes 
decisions, he should consider not only demand and inventory levels at the warehouse, but also consider 
demand and inventory levels at retailers.   

A multi-echelon model was first introduced as a serial multi-echelon system with stationary uncertain 
demand.  Clark and Scarf [3] analyzed the system on multi-period time horizon by determining the optimal 
policy for each echelon separately.  The system was extended from multi-period horizon to infinite time 
horizon using periodic base stock policies [4].  Besides the periodic review policies, De Bodt and Graves [5] 

applied a continuous review policy using reorder point and order quantity or so called (𝑠, 𝑄).  The model was 
later modified and proposed to apply to fast moving items by Mitra and Chatterjee [6].  From a serial inventory 
system, Bessler and Veinott [7] generalized the problem by including an arborescent structure - a divergent 
system that a stock point supplied multiple downstream stock points.  The system was analyzed with periodic 
review ordering policies in multi-period time horizon.  Then, the problem was extended to a divergent 2-
echelon system with infinite horizon.  The problem was studied in many different ways.  For example, lower 



DOI:10.4186/ej.2018.22.6.117 

120 ENGINEERING JOURNAL Volume 22 Issue 6, ISSN 0125-8281 (http://www.engj.org/) 

echelon locations were identical, and the demand was stationary and normally distributed [8].  Lower echelon 
locations were non-identical [9].  Period demands at end stock points were not normally distributed [10].  
Demands had correlation over both location and time [11].  However, these studies assume stationary 
demand while ours assumes seasonal demand.  Furthermore, there are some assumptions required in these 
studies such as nested policy which forces the lower echelon to order when higher echelon orders or no 
inventory at the higher echelon or no fixed ordering cost. 

There are papers considering multi-echelon inventory system with fluctuating deterministic demand or 
so called a deterministic dynamic demand.  Studies in this group were called the multi-echelon dynamic lot 
sizing problem which was extended with various additional constraints.  They were mostly solved by mixed 
integer programming models or algorithms such as Lagrangian relaxation or decomposition strategy. Zangwill 
[12] applied an echelon concept to a multi-echelon dynamic lot sizing problem. Diaby and Martel [13] studied 
a system with transportation and product price discount based on order quantity.  They developed a mixed 
integer programming model and used Lagrangian relaxation-based procedure to solve the problem.  
Jaruphongsa, Cetinkaya, and Lee [14] formulated a mixed integer programming model for a problem with 
time window constraint for demand delivery.  They decomposed the problem into a sequence of smaller 
problems and developed an algorithm based on dynamic programming to solve them.  Afzalabadi, Haji, and 
Haji [15] proposed heuristics for deterministic dynamic demand in infinite time horizon for a 2-echelon 
system.  The heuristics determined the optimal length of finite time horizon and the optimum ordering 
pattern which led to the minimum cost within infinite horizon.  The proposed heuristics gave better result 
than Silver-Meal algorithm and EOQ model proposed by Kovalev and Ng [16] which was developed for a 
discrete time inventory problem.  Besides deterministic demand, some heuristics were developed based on 
mathematical models to solve uncertain demand.  Tarim and Kingsman [17] developed an algorithm based 
on a mixed integer programming model to solve lot-sizing problem with service-level constraints for single-
item single location on multi-period.  Their algorithm was improved from a strategy proposed by Bookbinder 
and Tan [18].  The algorithm decomposed a problem into two stages: (1) determine timing to replenish orders 
using expected demand of all periods and (2) adjust actual order size at the time of ordering when actual 

demand is realized.  Tarim and Kingsman [19], then, applied the algorithm to calculate the (𝑅, 𝑆) policies for 
a single location with non-stationary demand system and Tarim and Smith [20] improved the algorithm to 
solve within shorter time by using a constraint programming model.   

With non-stationary uncertain demand, there are studies both in single-echelon and multi-echelon 
systems.  Although, there are various methods to deal with non-stationary demand, many methods are based 
on the same concept.  One of the concepts that is widely used is dividing the non-stationary demand into 
many phases of stationary demand.  In a multi-echelon system with non-stationary demand, Graves and 
Willems [21] proposed a model to determine locations to hold safety stock and size of safety stock at each 
location.  The model was based on Grave and Willems [22] which was developed for a system with stationary 
demand.  The model divided a planning horizon into many phases with different stationary demands.  Then, 
safety stock for each phase was determined.  The model also determined how safety stock levels changed 
from phase to phase.  Reddy and Rajendran [23] developed heuristics to determine order-up-to policy for a 
5-level serial supply chain with non-stationary demand at the lowest level.  They proposed a dynamic order-
up-to policy which the policy changed periodically.  A simulation study was conducted to evaluate the 
heuristics in different settings.  Kim, Wu, and Huang [24] applied a multi-period newsvendor model to a 
perishable product with non-stationary demand in a 2-echelon system.  The model gave better solutions 
compared to those from single-period newsvendor and EOQ model.  Grewal, Enns, and Rogers [25] applied 
simulation-optimization procedure to solve a single-echelon system with seasonal demand of two products.  
As demand had seasonal pattern which repeated cycle after cycle, each cycle could be divided into many 
phases with the same demand’s character as other cycles.  To correspond with demand in each phase, there 
were as many ordering policies as number of phases in a demand cycle.  Therefore, reorder points and lot 
sizes varied along demand pattern regions.  Ordering policy parameters were iteratively improved via process 
between simulation and optimization models.   

Although many researchers chose to apply multiple ordering policies on a system with non-stationary 
demand, the number of decision conditions will grow rapidly if the system deals with many products and 
their demands change frequently.  Due to complexity, multiple policies for non-stationary demands are not 
usually practical in real-life situations.  The concept to apply different ordering policies to each phase of 
demand is proper when each demand phase is longer than review period and lead time.  For example, when 
demand phase is 2,000 hours and lead time is 16 hours [25].  Tunc et al. [26] investigated that when demands 
followed a stable seasonal pattern with high uncertainty, stationary policies could reasonably substitute the 
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optimal non-stationary policies.  Stationary policies would be efficient in the system with high uncertain 
demand, high setup cost and low penalty cost.  For more classification in multi-echelon inventory system, 
please refer to De Kok et al [27].  They classified multi-echelon inventory research systematically with various 
dimensions such as system structure, resource, demand, performance indicator, and research goal.  They also 
identified research gap and potential future research based on recent technology development. 

This paper studies a divergent 2-echelon system with seasonal demand.  Since demand phase in our 
problem is one period or a length of each season is one period, which is shorter than a review period.  Multiple 
policies as many papers used for seasonal demand may not be proper.  Therefore, we choose to apply a single 
policy to our problem.  The objective of this paper is to develop a methodology to determine ordering policies 
to minimize the total cost respected to expected service level. 
 

3. Problem Statement 
 
This section describes the problem and shows the model formulation to determine ordering policies.  The 

problem considered is a 2-echelon inventory system having one warehouse and 𝑁 retailers with seasonal 
stochastic demand.  Retailers are supplied by the warehouse and the warehouse is supplied by external 
suppliers.  All locations are replenished with known lead time.  Demand that is not satisfied with on-hand 
inventory will be considered as demand loss.  The amount of loss must not exceed expected service level or, 
in this case, fill rate - the proportion of demand served from on-hand inventory [28]. 

Demand is assumed to be seasonal without trend and fluctuating within a cycle of a certain span of 
periods.  The demand pattern repeats itself cycle after cycle as shown in Fig. 2.  Period demands are assumed 
to be normally distributed.  For example, in Fig. 2, each cycle consists of 4 periods.  Average demand of 
periods 1, 5, 9 and 13 are normally distributed with the same parameters and so are periods 2, 6, 10 and 14.  

The system operates on periodic review basis using reorder point and order-up-to point or (𝑅, 𝑠, 𝑆).  The 
system controls inventory with echelon stock basis which means each location makes decision on its own 
inventory information and the information of all locations downstream.  This paper proposes a methodology 

to find optimal inventory policy based on (𝑅, 𝑠, 𝑆) system to minimize ordering and holding cost respected 
to expected service level. 

Since we consider stochastic demand, it is difficult to find the optimal solution by using a mathematical 
model.  However, a mixed integer programming model is developed to clarify the problem. 
 

 
 
Fig. 2. Demand pattern. 
 

The model objective is to minimize the total cost due to ordering and holding costs.  A mixed-integer 
programming model is as follows. 
Indices 

𝐼𝑟   is a set of retailers {1,2, . . , 𝑛} 



DOI:10.4186/ej.2018.22.6.117 

122 ENGINEERING JOURNAL Volume 22 Issue 6, ISSN 0125-8281 (http://www.engj.org/) 

𝐼𝑟𝑤  is a set of stock points including a warehouse and retailers {0,1, . . , 𝑛} 

(the warehouse is referred as 𝑖 = 0) 

𝐽  is a set of periods {1,2, . . , 𝑚} 
 
Parameters 

𝑑𝑒𝑚𝑎𝑛𝑑𝑖𝑗  = Demand of retailer 𝑖 in period 𝑗 (units) 

𝑐𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟𝑖  = Ordering cost of stock point 𝑖 ($) 

𝑐𝑜𝑠𝑡ℎ𝑜𝑙𝑑𝑖𝑛𝑔𝑖  = Holding cost of stock point 𝑖 ($/unit/period) 

𝑡𝑖   = Lead time of stock point 𝑖 (periods) 

𝑠𝑒𝑟𝑣𝑙𝑒𝑣𝑒𝑙𝑖  = Expected service level of retailer 𝑖 
𝑟𝑖𝑗  = 1 if stock point 𝑖 reviews its inventory in period 𝑗;  

= 0 otherwise 

𝑀𝑖 = A positive number that is greater than the total demand in planning horizon  

  of stock point 𝑖 
 
Decision variables 

𝐼𝑖𝑗   = On-hand inventory level at stock point 𝑖 at the end of period 𝑗 (units) 

𝑂𝑖𝑗   = Ordering amount of stock point 𝑖 at the end of period 𝑗 (units) 

𝐿𝑜𝑠𝑡𝑖𝑗  = Demand loss of retailer 𝑖 in period 𝑗 (units) 

𝐿𝑖𝑗     = 1 if on-hand inventory of retailer 𝑖 in period 𝑗 is not sufficient to cover period’s demand; 

  = 0 otherwise 

𝑍𝑖𝑗   = 1 if an order at stock point 𝑖 in period 𝑗 is placed; 

= 0 otherwise 

𝑅𝑒𝑂𝑟𝑑𝑒𝑟𝑖  = reorder point of stock point 𝑖 (units) 

𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖  = order-up-to point of stock point 𝑖 (units) 
Objective function 
 

Minimize ∑ ∑ 𝑍𝑖𝑗 × 𝑐𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟𝑖
𝑚
𝑗=1 +𝑛

𝑖=0 ∑ ∑ 𝐼𝑖𝑗 × 𝑐𝑜𝑠𝑡ℎ𝑜𝑙𝑑𝑖𝑛𝑔𝑖
𝑚
𝑗=1

𝑛
𝑖=0    (1) 

 
Subject to 
 

𝐼𝑖𝑗−1 + 𝑂𝑖𝑗−𝑡𝑖
+ 𝐿𝑜𝑠𝑡𝑖𝑗 =  𝑑𝑒𝑚𝑎𝑛𝑑𝑖𝑗 + 𝐼𝑖𝑗    ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽  (2) 

𝐼0𝑗−1 + 𝑂0𝑗−𝑡0
= ∑ 𝑂𝑖𝑗

𝑛
𝑖=1 + 𝐼0𝑗      ∀𝑗 ∈ 𝐽   (3) 

𝑑𝑒𝑚𝑎𝑛𝑑𝑖𝑗 − (𝐼𝑖𝑗−1 + 𝑂𝑖𝑗−𝑡𝑖
) ≤ 𝐿𝑖𝑗  ×  𝑀𝑖    ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽  (4) 

(𝐼𝑖𝑗−1 + 𝑂𝑖𝑗−𝑡𝑖
) − 𝑑𝑒𝑚𝑎𝑛𝑑𝑖𝑗 ≤ (1 − 𝐿𝑖𝑗)  × 𝑀𝑖   ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽  (5) 

𝐿𝑜𝑠𝑡𝑖𝑗 ≤ 𝐿𝑖𝑗  ×  𝑀𝑖       ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽  (6) 

𝐼𝑖𝑗 ≤ (1 − 𝐿𝑖𝑗)  ×  𝑀𝑖       ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽  (7) 

𝑍𝑖𝑗 × 𝑟𝑖𝑗 × 𝑀𝑖  ≥  𝑂𝑖𝑗       ∀𝑖 ∈ 𝐼𝑟𝑤, ∀𝑗 ∈ 𝐽 (8) 

𝐼𝑖𝑗−1 + ∑ 𝑂𝑖𝑙
𝑗−1
𝑙=𝑗−𝑡𝑖

+ (𝑍𝑖𝑗 + (1 − 𝑟𝑖𝑗)) × 𝑀𝑖 − 0.5 ≥ 𝑅𝑒𝑂𝑟𝑑𝑒𝑟𝑖   ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽  (9) 

𝐼𝑖𝑗−1 + ∑ 𝑂𝑖𝑙
𝑗−1
𝑙=𝑗−𝑡𝑖

≤ 𝑅𝑒𝑂𝑟𝑑𝑒𝑟𝑖 + (1 − 𝑍𝑖𝑗) × 𝑀𝑖    ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽  (10) 

𝐼𝑖𝑗−1 + ∑ 𝑂𝑖𝑙
𝑗
𝑙=𝑗−𝑡𝑖

+ (1 − 𝑍𝑖𝑗) × 𝑀𝑖 ≥ 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖    ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽  (11) 

𝐼𝑖𝑗−1 + ∑ 𝑂𝑖𝑙
𝑗
𝑙=𝑗−𝑡𝑖

≤ 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖 + (1 − 𝑍𝑖𝑗) × 𝑀𝑖   ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽  (12) 

∑ 𝐼𝑖𝑗−1
𝑛
𝑖=0 + ∑ ∑ 𝑂𝑖𝑙

𝑗−1
𝑙=𝑗−𝑡𝑖

𝑛
𝑖=0 + (𝑍0𝑗 + (1 − 𝑟0𝑗)) × 𝑀𝑖 − 0.5 ≥ 𝑅𝑒𝑂𝑟𝑑𝑒𝑟0  

∀𝑗 ∈ 𝐽   (13) 

∑ 𝐼𝑖𝑗−1
𝑛
𝑖=0 + ∑ ∑ 𝑂𝑖𝑙

𝑗−1
𝑙=𝑗−𝑡𝑖

𝑛
𝑖=0 ≤ 𝑅𝑒𝑂𝑟𝑑𝑒𝑟0 + (1 − 𝑍0𝑗) × 𝑀𝑖  ∀𝑗 ∈ 𝐽   (14) 

∑ 𝐼𝑖𝑗−1
𝑛
𝑖=0 + ∑ ∑ 𝑂𝑖𝑙

𝑗−1
𝑙=𝑗−𝑡𝑖

𝑛
𝑖=0 + 𝑂0𝑗 + (1 − 𝑍0𝑗) × 𝑀𝑖 ≥ 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜0  ∀𝑗 ∈ 𝐽   (15) 

∑ 𝐼𝑖𝑗−1
𝑛
𝑖=0 + ∑ ∑ 𝑂𝑖𝑙

𝑗−1
𝑙=𝑗−𝑡𝑖

𝑛
𝑖=0 + 𝑂0𝑗 ≤ 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜0 + (1 − 𝑍0𝑗) × 𝑀𝑖  ∀𝑗 ∈ 𝐽   (16) 
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1 −
𝐿𝑜𝑠𝑡𝑖𝑗

𝑑𝑒𝑚𝑎𝑛𝑑𝑖𝑗
 ≥  𝑠𝑒𝑟𝑣𝑙𝑒𝑣𝑒𝑙𝑖      ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽  (17) 

𝐼𝑖𝑗, 𝑂𝑖𝑗 , 𝑅𝑒𝑂𝑟𝑑𝑒𝑟𝑖, 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖 ≥ 0     ∀𝑖 ∈ 𝐼𝑟𝑤, ∀𝑗 ∈ 𝐽 (18) 

𝑍𝑖𝑗 ∈ {0,1}        ∀𝑖 ∈ 𝐼𝑟𝑤, ∀𝑗 ∈ 𝐽 (19) 

 
The objective function (1) is to minimize the total cost of a system due to ordering and holding costs.  

Constraints (2) are inventory levels and product flows in and out (and also loss) at each retailer in each period 
and constraints (3) are inventory levels and product flows in and out at the warehouse.  It is assumed that the 
warehouse always has sufficient items for retailers’ orders so there is no demand loss at the warehouse.  

Constraints (4) to (7) force decision variables 𝐿𝑜𝑠𝑡𝑖𝑗 and 𝐼𝑖𝑗.  If available inventory at the retailer is sufficient 

to serve period’s demand, 𝐿𝑖𝑗 will be zero and 𝐿𝑜𝑠𝑡𝑖𝑗will be zero; otherwise, 𝐿𝑖𝑗 will be 1 and 𝐼𝑖𝑗 will be zero.  

Constraints (8) define that, on review period (𝑟𝑖𝑗 = 1), if retailer(s) or warehouse place order, fixed ordering 

costs will occur.  If it is not on review period (𝑟𝑖𝑗 = 0), order amount, 𝑂𝑖𝑗 , will be zero.  In constraints (9) 

through (16), reorder points and order-up-to points for the stock points are defined.  Constraints (9) to (12) 
are applied to retailers, while constraints (13) to (16) are applied to the warehouse.  Constraints (9) and (10) 
force the retailers to place orders when their inventory positions (the total level of items on-hand and on-
order) are less than or equal to the reorder points and there must be no order placed when inventory positions 
are higher than the reorder points.  In constraints (9), if the inventory positions are equal to or lower than 

reorder points and 𝑟𝑖𝑗 = 1, 𝑍𝑖𝑗 will be 1.  If 𝑟𝑖𝑗 = 0, 𝑍𝑖𝑗 will be either 1 or 0 where it tends towards 0 due to 

the objective function.  There is a -0.5 term on the left-hand side because, without this term, when the 

inventory position is equal to reorder points, 𝑍𝑖𝑗 can be either 0 or 1 which means that it might be no order 

placed.  In constraints (10), on the other hand, if the inventory positions are higher than reorder points, 𝑍𝑖𝑗 

will be 0.  Constraints (11) and (12) force the inventory positions after placing orders to be equal to the order-

up-to points.   In these two constraints, if 𝑍𝑖𝑗 = 0, the constraints will always be true.  In constraints (11), 

when an order is placed or 𝑍𝑖𝑗 = 1, the inventory level plus order must not less than the order-up-to point.  

Besides, in constraints (12), the inventory level plus order must not exceed the order-up-to point.  Constraints 
(13) through (16) are similar to constraints (9) to (12) but they are applied to the warehouse.  The major 
difference between the warehouse and retailers is that, at the warehouse, an echelon stock concept is applied 
so the inventory level is the summation of inventory on-hand and on-order in the system.  The echelon stock 
concept is applied to the warehouse since demands occur only at retailers.  Without information of inventory 
level at retailers, the warehouse must hold stock sufficient to fill retailers’ orders all the time which leads to 
higher holding cost.  By applying the echelon stock concept, the warehouse can predict when retailers are 
about to place orders and can manage to fill its inventory just before those orders are placed.  Constraints 
(17) guarantee service level for every retailer.  Constraints (18) and (19) force all decision variables to be either 
positive values or binary. 
 

4. Methodology 
 
Since the system has stochastic seasonal demand, it cannot be directly solved by a mixed integer programming 
model.  Like an approach proposed by Bookbinder and Tan [18], they proposed methodology composed of 
2 phases – (1) determine timing of replenishment and number of periods to cover (2) determine safety stocks.  
We propose a 2-phase methodology.  The first phase calculated the deterministic policies by using average 
period demand.  These deterministic policies are used to determine when to order and the number of period’s 
demands which the order quantity covers.  The second phase is finding appropriate safety stock levels based 
on the deterministic policies from the first phase to absorb variability of stochastic demand.  Safety stock 
levels can be determined by solving various demand scenarios.  
 
4.1. Determining Policy for Deterministic Demand Component  
 
This phase is used to determine when to order and the number of periods which the order quantity covers 
their demand.  Since demand is assumed deterministic, policies are determined based on average demand. 
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4.1.1. Concepts for determining initial ordering policy 
 
Since a mixed integer programming model in Section 3 is used to determine deterministic policies.  The 
problem is solved within finite-period horizon while real-life system lies within infinite period.  A conflict 
emerges when an infinite horizon problem is solved using finite horizon.  While there is no demand after the 
planning time horizon, on-hand inventory level at the last period tends to be zero which gives lower holding 
cost.  Applying this type of solutions to an infinite-horizon problem may lead to shortage at the period beyond 
the considered horizon.  Therefore, constraints (20) and (21) are added to the MIP model to force on-hand 
and on-order inventory at the beginning to be equal to those at the end of horizon.  Noted that, in case of 
stationary demand, the planning horizon can be any periods since every period has the same average demand.  
However, since we consider seasonal demand, each period has different average demand so on-hand and on-
order inventory at the end of horizon must come from the same period of a cycle as the period at the 
beginning of the horizon.  Due to this concept, the planning horizon must be the multiple of cycles. 
 

𝐼𝑖0 =  𝐼𝑖𝑚        ∀𝑖 ∈ 𝐼𝑟𝑤 (20) 

𝑂𝑖0 =  𝑂𝑖𝑚        ∀𝑖 ∈ 𝐼𝑟𝑤 (21) 
 
4.1.2. Alternatives for determining initial ordering policy 
 

As the system operates on periodic review basis or (𝑅, 𝑠, 𝑆) policy, there can be alternative solutions for each 
problem which provide the same minimum total cost.  For example, the problem with 4-period demand cycle 
shown in Table 2 has reorder point of 480 and order-up-to point of 4480.  Since an order will be placed 
whenever the inventory position reaches the reorder point or below to raise the level up to the order-up-to 
point, the inventory position will raise to the same level no matter how many on-hand items at the time.  
Therefore, the reorder points between 480 to 1,359 with the same order-up-to point of 4,480 give the same 
result as shown in Table 2.  Although, both 480 and 1,359 reorder points give the same results in this 
deterministic phase, they can lead to different safety stocks in the second phase which means the different 
total costs. 
 
Table 2. Example of alternative solutions. 
 

Period 0 1 2 3 4 5 6 7 8 

Demand  880 480 1200 1440 880 480 1200 1440 

on-hand inventory 1360 480 4000 2800 1360 480 4000 2800 1360 

on-order inventory 0 4000 0 0 0 4000 0 0 0 

inventory position 1360 4480 4000 2800 1360 4480 4000 2800 1360 

 
With these alternative solutions, there are 2 policies obtained from the model.  We name them lower 

policy and upper policy.  The lower one is the policy with the lowest value of reorder point or 480 units in 
this case and the upper one is the policy with highest value or 1,359 units.  The lower and upper policies will 
apply to all stock points in the system.  To obtain lower-alternative policy, the objective function is modified 
as follow.  The objective function (22) is the original function modified as a goal programming model of 

which the main objective is minimizing the total cost weighted by 𝑊𝑐𝑜𝑠𝑡  and the secondary objective is 

minimizing reorder point.  The value of 𝑊𝑐𝑜𝑠𝑡 should be high enough to dominate sum of the reorder points. 
 

Minimize 𝑊𝑐𝑜𝑠𝑡 × (∑ ∑ 𝑍𝑖𝑗 × 𝑐𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟𝑖
𝑚
𝑗=1 +𝑛

𝑖=0 ∑ ∑ 𝐼𝑖𝑗 × 𝑐𝑜𝑠𝑡ℎ𝑜𝑙𝑑𝑖𝑛𝑔𝑖
𝑚
𝑗=1

𝑛
𝑖=0 ) 

    + ∑ 𝑅𝑒𝑂𝑟𝑑𝑒𝑟𝑖
𝑛
𝑖=0       (22) 

 
On the other hand, upper-alternative policy can be obtained via another modified objective function (23).   
 

Minimize 𝑊𝑐𝑜𝑠𝑡 × (∑ ∑ 𝑍𝑖𝑗 × 𝑐𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟𝑖
𝑚
𝑗=1 +𝑛

𝑖=0 ∑ ∑ 𝐼𝑖𝑗 × 𝑐𝑜𝑠𝑡ℎ𝑜𝑙𝑑𝑖𝑛𝑔𝑖
𝑚
𝑗=1

𝑛
𝑖=0 ) 
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    − ∑ 𝑅𝑒𝑂𝑟𝑑𝑒𝑟𝑖
𝑛
𝑖=0       (23) 

 
To compare the quality of solutions, one more policy is developed based on EOQ concept.  A solution 

with EOQ concept is determined by forcing the difference between reorder point and order-up-to point at 
each retailer equal to EOQ.  Constraints (24) is added to the model to force the difference between order-

up-to and reorder points close to EOQ value.  The 𝑑𝑖𝑓𝑓𝑖
+ is positive when the difference between order-up-

to point and reorder point is greater than EOQ.  An EOQ-alternative policy is determined with the objective 
function (25).  In this case, the different between order-up-to point and reorder point equals to EOQ is the 

main objective.  Therefore, 𝑊𝐸𝑂𝑄 must be high enough to dominate another objective. 

 

(𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑡𝑜𝑖 − 𝑅𝑒𝑂𝑟𝑑𝑒𝑟𝑖) −  𝑒𝑜𝑞𝑖 = 𝑑𝑖𝑓𝑓𝑖
+ − 𝑑𝑖𝑓𝑓𝑖

−   ∀𝑖 ∈ 𝐼𝑟   (24) 
 

Minimize ∑ ∑ 𝑍𝑖𝑗 × 𝑐𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟𝑖
𝑚
𝑗=1 +𝑛

𝑖=0 ∑ ∑ 𝐼𝑖𝑗 × 𝑐𝑜𝑠𝑡ℎ𝑜𝑙𝑑𝑖𝑛𝑔𝑖
𝑚
𝑗=1

𝑛
𝑖=0  

+𝑊𝐸𝑂𝑄 × (𝑑𝑖𝑓𝑓𝑖
+ − 𝑑𝑖𝑓𝑓𝑖

−)    (25) 

 
Therefore, there are 3 alternative policies for each instance from the first phase.  After determining initial 

policies for each instance, each policy will be used as input to determine safety stock levels to deal with 
uncertain component of demand in the next phase.  
 
4.2. Determining Safety Stock for Random Demand Component 
 
Since demand is normally distributed, solution from the first phase which based on average demand may not 
achieve expected service level in various scenarios.  In this phase, safety stock levels are calculated for all 
stock points to absorb variability of demand. 

Various scenarios of demand are generated from the normal distribution and a set of scenarios is solved 
simultaneously with a MIP model to find safety stock level by using ordering policy from the previous model 

as input parameters.  Those input parameters are 𝑑𝑒𝑡𝑒𝑟𝑚𝑅𝑒𝑜𝑟𝑑𝑒𝑟𝑖, 𝑑𝑒𝑡𝑒𝑟𝑚𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐼𝑖 and 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑂𝑖𝑙 . Reorder points and order-up-to points of final ordering policy are reorder points and order-up-
to points from initial policy plus safety stock. 

The model in this phase is developed based on the model in the previous section with some adjustment 
to deal with multiple scenarios and demand loss.  Additional indices, parameters and decision variables are as 
follows. 
 
Additional indices 
 

𝑆  is a set of scenarios {1,2, . . , 𝑡} 

𝐿  is a set of periods {− max{𝑙𝑒𝑎𝑑𝑇𝑖𝑚𝑒𝑖} + 1, . . ,0} 
 
Additional parameters 
 

𝑑𝑒𝑚𝑎𝑛𝑑𝑠𝑖𝑗   = Demand of retailer 𝑖 in period 𝑗 of scenario 𝑠 (units) 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐼𝑖   = Initial on-hand inventory level of stock point 𝑖 (units) 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑂𝑖𝑙   = Initial on-order of stock point 𝑖 on period 𝑙 (units) 

𝑑𝑒𝑡𝑒𝑟𝑚𝑅𝑒𝑜𝑟𝑑𝑒𝑟𝑖  = Deterministic reorder point of stock point 𝑖 (units) 

𝑑𝑒𝑡𝑒𝑟𝑚𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖  = Deterministic Order-Up-To point of stock point 𝑖 (units) 
 
Additional decision variables 
 

𝐼𝑠𝑖𝑗   = Inventory level at stock point 𝑖 at the end of period 𝑗 of scenario 𝑠 (units) 

𝑂𝑠𝑖𝑗   = Ordering amount of stock point 𝑖 at the end of period 𝑗 of scenario 𝑠 (units) 

𝐿𝑜𝑠𝑡𝑠𝑖𝑗   = Demand loss of retailer 𝑖 in period 𝑗 of scenario 𝑠 (units) 

𝐿𝑠𝑖𝑗    = 1 if on-hand inventory of retailer 𝑖 in period 𝑗 of scenario 𝑠 is not sufficient to cover    

        period’s demand; 
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  = 0 otherwise 

𝑍𝑠𝑖𝑗    = 1 if regular order at stock point 𝑖 in period 𝑗 of scenario 𝑠 is placed; 

= 0 otherwise 

𝑆𝑆𝑖  = Safety stock of stock point 𝑖 (units) 
 
Objective function 
 
Minimize 
 

∑ ∑ ∑ 𝑍𝑠𝑖𝑗 × 𝑐𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟𝑖
𝑚
𝑗=1 +𝑛

𝑖=0
𝑡
𝑠=1 ∑ ∑ ∑ 𝐼𝑠𝑖𝑗 × 𝑐𝑜𝑠𝑡ℎ𝑜𝑙𝑑𝑖𝑛𝑔𝑖

𝑚
𝑗=1

𝑛
𝑖=0

𝑡
𝑠=1     (26) 

 
Subject to 
 

𝐼𝑠𝑖𝑗−1 + 𝑂𝑠𝑖𝑗−𝑡𝑖
+ 𝐿𝑜𝑠𝑡𝑠𝑖𝑗 =  𝑑𝑒𝑚𝑎𝑛𝑑𝑠𝑖𝑗 + 𝐼𝑠𝑖𝑗    ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆  (27) 

𝐼𝑠0𝑗−1 + 𝑂𝑠0𝑗−𝑡0
= ∑ 𝑂𝑠𝑖𝑗

𝑛
𝑖=1 + 𝐼𝑠0𝑗    ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆   (28) 

𝑑𝑒𝑚𝑎𝑛𝑑𝑠𝑖𝑗 − (𝐼𝑠𝑖𝑗−1 + 𝑂𝑠𝑖𝑗−𝑡𝑖
) ≤ 𝐿𝑠𝑖𝑗  ×  𝑀𝑖   ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆  (29) 

(𝐼𝑠𝑖𝑗−1 + 𝑂𝑠𝑖𝑗−𝑡𝑖
) − 𝑑𝑒𝑚𝑎𝑛𝑑𝑠𝑖𝑗 ≤ (1 − 𝐿𝑠𝑖𝑗)  × 𝑀𝑖  ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆  (30) 

𝐿𝑜𝑠𝑡𝑠𝑖𝑗 ≤ 𝐿𝑠𝑖𝑗  × 𝑀𝑖      ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆  (31) 

𝐼𝑠𝑖𝑗 ≤ (1 − 𝐿𝑠𝑖𝑗)  × 𝑀𝑖      ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆  (32) 

𝑍𝑠𝑖𝑗 × 𝑟𝑖𝑗 × 𝑀𝑖  ≥  𝑂𝑠𝑖𝑗      ∀𝑖 ∈ 𝐼𝑟𝑤, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆 (33) 

𝐼𝑠𝑖𝑗−1 + ∑ 𝑂𝑠𝑖𝑙
𝑗−1
𝑙=𝑗−𝑡𝑖

+ (𝑍𝑠𝑖𝑗 + (1 − 𝑟𝑖𝑗)) × 𝑀𝑖 − 0.5 ≥ 𝑅𝑒𝑂𝑟𝑑𝑒𝑟𝑖    

∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆  (34) 

𝐼𝑠𝑖𝑗−1 + ∑ 𝑂𝑠𝑖𝑙
𝑗−1
𝑙=𝑗−𝑡𝑖

≤ 𝑅𝑒𝑂𝑟𝑑𝑒𝑟𝑖 + (1 − 𝑍𝑠𝑖𝑗) × 𝑀𝑖   ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆  (35) 

𝐼𝑠𝑖𝑗−1 + ∑ 𝑂𝑠𝑖𝑙
𝑗
𝑙=𝑗−𝑡𝑖

+ (1 − 𝑍𝑠𝑖𝑗) × 𝑀𝑖 ≥ 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖   ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆  (36) 

𝐼𝑠𝑖𝑗−1 + ∑ 𝑂𝑠𝑖𝑙
𝑗
𝑙=𝑗−𝑡𝑖

≤ 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖 + (1 − 𝑍𝑠𝑖𝑗) × 𝑀𝑖   ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆  (37) 

∑ 𝐼𝑠𝑖𝑗−1
𝑛
𝑖=0 + ∑ ∑ 𝑂𝑠𝑖𝑙

𝑗−1
𝑙=𝑗−𝑡𝑖

𝑛
𝑖=0 + (𝑍𝑠0𝑗 + (1 − 𝑟0𝑗)) × 𝑀𝑖 − 0.5 ≥ 𝑅𝑒𝑂𝑟𝑑𝑒𝑟0   

∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆  (38) 

∑ 𝐼𝑖𝑗−1
𝑛
𝑖=0 + ∑ ∑ 𝑂𝑠𝑖𝑙

𝑗−1
𝑙=𝑗−𝑡𝑖

𝑛
𝑖=0 ≤ 𝑅𝑒𝑂𝑟𝑑𝑒𝑟0 + (1 − 𝑍𝑠0𝑗) × 𝑀𝑖   ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆  (39) 

∑ 𝐼𝑠𝑖𝑗−1
𝑛
𝑖=0 + ∑ ∑ 𝑂𝑠𝑖𝑙

𝑗−1
𝑙=𝑗−𝑡𝑖

𝑛
𝑖=0 + 𝑂𝑠0𝑗 + (1 − 𝑍0𝑗) × 𝑀𝑖 ≥ 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜0  

         ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆  (40) 

∑ 𝐼𝑖𝑗−1
𝑛
𝑖=0 + ∑ ∑ 𝑂𝑠𝑖𝑙

𝑗−1
𝑙=𝑗−𝑡𝑖

𝑛
𝑖=0 + 𝑂𝑠0𝑗 ≤ 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜0 + (1 − 𝑍𝑠0𝑗) × 𝑀𝑖  

         ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆  (41) 

1 −
𝐿𝑜𝑠𝑡𝑠𝑖𝑗

𝑑𝑒𝑚𝑎𝑛𝑑𝑠𝑖𝑗
 ≥  𝑠𝑒𝑟𝑣𝑙𝑒𝑣𝑒𝑙𝑖     ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆  (42) 

𝑅𝑒𝑂𝑟𝑑𝑒𝑟𝑖 =  𝑑𝑒𝑡𝑒𝑟𝑚𝑅𝑒𝑜𝑟𝑑𝑒𝑟𝑖 + 𝑆𝑆𝑖      ∀𝑖 ∈ 𝐼𝑟, ∀𝑠 ∈ 𝑆    (43) 

𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖 =  𝑑𝑒𝑡𝑒𝑟𝑚𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖 + 𝑆𝑆𝑖   ∀𝑖 ∈ 𝐼𝑟, ∀𝑠 ∈ 𝑆    (44) 

𝐼𝑠𝑖0 =  𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐼𝑖 + 𝑆𝑆𝑖        ∀𝑖 ∈ 𝐼𝑟, ∀𝑠 ∈ 𝑆    (45) 

𝑂𝑠𝑖𝑙 =  𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑂𝑖𝑙      ∀𝑖 ∈ 𝐼𝑟, ∀𝑙 ∈ 𝐿, ∀𝑠 ∈ 𝑆   (46) 

𝐼𝑠𝑖𝑗, 𝑂𝑠𝑖𝑗 , 𝑅𝑒𝑂𝑟𝑑𝑒𝑟𝑖, 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖 ≥ 0    ∀𝑖 ∈ 𝐼𝑟𝑤, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆  (47) 

𝑍𝑠𝑖𝑗 ∈ {0,1}       ∀𝑖 ∈ 𝐼𝑟𝑤, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆  (48) 

 
The objective function (26) is to minimize the total cost of the system in all scenarios due to ordering 

cost and holding cost. Constraints (27) through (42) force variables in the same way as constraints (2) to (17).  
Constraints (43) and (44) calculate reorder points and order-up-to points of the final policy.  Constraints (45) 

force initial on-hand inventory, 𝐼𝑠𝑖0, equal to an initial amount obtained from the previous model plus safety 

stock.  Constraints (46) force initial on-order before the first period, 𝑂𝑠𝑖𝑙 , equal to an initial amount obtained 

from the previous model, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑂𝑖𝑙 .  Constraints (47) and (48) force all decision variables to be either 
positive values or binary. 
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5. Experimental Results and Discussion 
 
The experiment summary is shown in Fig. 3.  To test the proposed methodology, in the first phase, six 
instances are developed.  Three instances have 4-period cycle and the others have 7-period cycle.  Each group 
of three instances has the same period-cycle demand pattern and holding cost but different ordering costs: 
high, low and zero.  High value is ordering costs of which EOQ values close to the retailers’ cycle demand 
and low value is costs of which EOQ values smaller than the cycle demand.  Certainly, the zero value is an 
ordering cost with value of zero.  In Fig. 3, the ordering cost and holding cost ratios are shown for each 
location as (WH, R1, R2) which means the warehouse, retailer1 and retailer2.  In all instances, holding cost 
is 1 ($/unit/period).  Demand pattern for each retailer is also shown as average demand in each period.  
These six instances are solved using an MIP model in phase I to find the best reorder and order-up-to points 
for average demand under three initial policies.  These three initial policies are lower, upper and EOQ 
discussed in section 4.1.2.  Since the horizon must be multiples of cycles, 6-cycle planning horizon is used in 
this phase.  Therefore, the 4-period cycle instances have 24-period horizon and the 7-period cycle instances 
have 42-period horizon.  The MIP models were solved by using CPLEX.  All experiments ran on a computer 
with 2.00 GHz Intel Core i7 processor and 4 GB of RAM. 

In the second phase, 3 different standard deviations are used to generate various scenarios of the 
problem, i.e. 10%, 20% and 25% of average demand.  We assumed that demands are normally distributed.  
Demand in each period is randomly generated based on average and standard deviation of that period.  
Demand of the 1st period in every cycle has the same average and standard deviation.  This also applies to 
the 2nd, 3rd and so on.  A set of 4 scenarios is randomly generated based on the same parameters and solved 
for safety stock with the second MIP model.  Since they are randomly generated, actual demand in each 
scenarios is different.  Each scenario has 24-cycle horizon which is 96-period horizon for 4-period instance 
and 168-period horizon for 7-period instance.  The instance with 4-period cycle under 99% is used as the 
base case.  Then a 4-period cycle under 95% service level is used to measure the differences between service 
levels.  Furthermore, the instances with 7-period cycle under 99% service level is used to measure the 
differences between the number of periods in cycle. 

After final policy is developed from the second phase, the performance of the policy is tested with 
additional 1,000-period scenario to investigate whether demand loss is within expected service level.   

 
5.1. Comparison among the Lower, Upper and EOQ Alternatives 
 
Under both 99% and 95% service level, in 4-period cycle instances, all three alternatives perform the same 
way.  Comparing upper and lower policies, upper policy gives the lower total cost in every scenarios.  The 
upper policy could give lower total costs since it has higher reorder points which lead to lower safety stock 
in the second model.  Since the upper and lower policies have different reorder points but the same order-
up-to points.  Although reorder points are raised by safety stock to the same levels, the upper policies will 
have lower final order-up-to points which lead to smaller sizes of orders and lower holding costs.  In case of 
zero ordering cost, EOQ policy gives the lowest total cost.  In this case, EOQ is zero which means reorder 
points and order-up-to points of retailers in EOQ policy are the same points.  It means that the policy of 

retailers are (𝑅, 𝑆) instead of (𝑅, 𝑠, 𝑆) and they have inventory position filled at order-up-to point in every 
period, which leads to low holding cost and low total cost since ordering cost is zero.  The average differences 
in costs are shown in Table 3 and Table 4.  The average difference from the best solution is calculated from 
4 scenarios, so alternatives with 0.00% difference are the alternatives that perform better than the others in 
all 4 scenarios.  However, in some case, one alternative may outperform other alternatives in some scenarios 
when another alternative outperforms it in other scenarios.  For example, in Table 3, at high ordering cost 
and SD to demand average ratio of 25%, upper policy gives better results than EOQ policy in 3 scenarios 
and the EOQ policy performs better in 1 scenario.  Therefore, upper-alternative difference is 0.01% and 
EOQ-alternative difference is 0.61%. 

Generally, in Table 3 and Table 4, most instances can be solved within 5 minutes but, in some cases, it 
can take almost an hour.  It takes longer time to solve an instance with low service level than an instance with 
high service level.  Since lower service level means higher demand loss allowed, the search space is larger than 
those problems with higher service level.  As there are more options to be chosen, it takes longer time to find 
the optimal solution.   
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Furthermore, in 7-period cycle instances, upper policy also gives lower total cost than lower policy in all 
scenarios as shown in Table 5.  However, in case of zero ordering cost, all three alternatives receive the same 
policy with the same total cost in phase 1 but the upper policy has the highest reorder points at the warehouse.  
Therefore, when their reorder points are raised by safety stock to the same values, the upper policy has the 
lowest order-up-to points in phase 2 which leads to the lowest holding costs. 

Most instances in Table 5 can be solved within 15 minutes but, in some cases, it can take up to 3 hours.  
Comparing computational time, the problems with longer planning horizon require longer computational 
time.  For example, the instances with 168-period planning horizon require 1527.89 seconds on average which 
is longer than 224.24 s required by the instances with 96-period horizon.  Details of all scenarios’ costs and 
computational time are provided at http://pioneer.netserv.chula.ac.th/~twipawee/RsS_MIP.zip 
 

 
 
Fig. 3. Experimental summary. 
 
 

Policy Determination

Average demand in each period

Period/cycle Retailer 1 Retailer 2

Ordering cost/

Holding cost

(WH, R1, R2)

4 880, 480, 1200, 1440 880, 1840, 2400, 2880 High (12,000, 12,000, 12,000)

4  880, 480, 1200, 1440  880, 1840, 2400, 2880 Low (750, 750, 750)

4  880, 480, 1200, 1440  880, 1840, 2400, 2880 Zero (0, 0, 0)

7 105, 99, 109, 121, 88, 140, 38 226, 228, 220, 209, 159, 287, 71 High (2,450, 2,450, 4,900)

7 105, 99, 109, 121, 88, 140, 38 226, 228, 220, 209, 159, 287, 71 Low (612.5, 612.5, 1225)

7 105, 99, 109, 121, 88, 140, 38 226, 228, 220, 209, 159, 287, 71 Zero (0, 0, 0)

First phase:

Mixed integer programming model

(Determine policies for each instance)

Input: Demand, Order Cost, Holding Cost, Leadtime

Initial Policy

Lower

Upper

EOQ

Output: Initial policies - reorder points, order-up-to points, 

Output: initial on-hand inventory, initial order

Use initial policies as input parameters

SD/demand 

average

generate demand set for 

each SD value
Scenario Set

condition to solve each 

scenario set
Service Level

10% Scenario 1 99%

20% Scenario 2 95%

25% Scenario 3

Scenario 4

Second phase:

Mixed integer programming model

(Determine safety stock for each condition using initial policy)

Safety stock

Output: Final policies - reorder points, order-up-to points, initial on-hand inventory, initial order, safety stock

Policy Evaluation

Test on 1,000-period scenario
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Table 3. Average difference and computational time for 4-period cycle instances at 99% service level. 
 

   

Average % Difference  
from Best Solution 

Computational 
Time (s) 

Service Level 
Ordering Cost/ 
Holding Cost 

SD/ 
Average Upper Lower EOQ Upper Lower EOQ 

0.99 High 10% 0.00% 14.64% 10.39% 148.52 110.03 94.14 

  20% 0.00% 3.61% 1.18% 70.73 93.31 70.86 

  25% 0.01% 4.46% 0.61% 158.42 91.94 113.72 

 Low 10% 0.00% 26.84% 12.72% 2641.00 111.80 286.22 

  20% 0.00% 19.54% 11.09% 124.95 95.75 234.00 

  25% 0.00% 18.29% 11.01% 126.12 138.34 110.75 

 Zero 10% 6.82% 35.97% 0.00% 125.69 195.44 106.02 

  20% 9.60% 30.18% 0.00% 96.38 104.39 60.38 

  25% 8.07% 27.48% 0.00% 61.55 411.69 72.31 

 
 
Table 4. Average difference and computational time for 4-period cycle instances at 95% service level. 
 

   

Average % Difference  
from Best Solution 

Computational 
Time (s) 

Service Level 
Ordering Cost/ 
Holding Cost 

SD/ 
Average Upper Lower EOQ Upper Lower EOQ 

0.95 High 10% 0.00% 14.74% 10.44% 1576.31 242.22 143.74 

  20% 0.00% 3.55% 1.30% 108.73 172.39 74.34 

  25% 0.10% 4.27% 0.39% 112.86 77.00 1625.42 

 Low 10% 0.00% 27.02% 12.77% 687.84 144.97 1191.17 

  20% 0.00% 19.75% 11.39% 127.03 117.03 271.11 

  25% 0.00% 18.49% 11.20% 81.33 88.27 150.52 

 Zero 10% 7.09% 36.41% 0.00% 727.36 104.42 113.27 

  20% 9.25% 30.17% 0.00% 121.42 151.84 97.67 

  25% 7.88% 27.58% 0.00% 107.27 87.50 92.12 
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Table 5. Average difference and computational time for 7-period cycle instances at 99% service level. 
 

   
Average % Difference  
from Best Solution 

Computational 
Time (s) 

Service Level 

Ordering 
Cost/ 
Holding 
Cost 

SD/ 
Average 

Upper Lower EOQ Upper Lower EOQ 

0.99 High 10% 0.00% 5.84% 5.84% 486.16 827.66 844.09 

  20% 0.00% 2.32% 2.32% 1437.59 719.77 745.90 

  25% 0.00% 3.74% 3.74% 11458.00 1893.64 1732.43 

 Low 10% 26.65% 45.16% 0.00% 654.94 672.63 358.24 

  20% 30.52% 43.01% 0.00% 695.42 1359.44 653.16 

  25% 29.57% 43.74% 0.00% 8220.59 1389.48 1394.17 

 Zero 10% 0.00% 70.26% 50.34% 697.93 409.28 189.54 

  20% 0.00% 45.41% 31.98% 787.83 378.00 1491.00 

  25% 0.00% 37.80% 26.37% 617.67 469.65 668.90 

 

5.2. Efficiency of Each Alternative on Another Set of Demands 
 
Initial policies from the first phase and safety stock from the second phase are combined as final ordering 
policy.  These combinations of deterministic policy and safety stock are tested on another scenario with 1,000 
periods to compare its robustness with total cost and service level.  

Focusing on the robustness of policies, on average for 4-period cycle, average loss is around 0.00% to 
0.19% for 99% service level and 0.00% to 0.22% for 95% service level as shown in Fig. 4 and Fig. 5.  In a 
certain period, applying upper and EOQ policies can lead to the maximum loss (not the average loss shown 
in Figs. 4 and 5) as high as 39.75% for 99% service level and 42.58% for 95% service level while the maximum 
loss of lower policies is no higher than 25% and 30% respectively.  However, the number of periods that loss 
is higher than the expected service level is smaller than 2% in a span of 1,000 periods.  For 7-period cycle, 
average loss is around 0.00% to 0.05% for 99% service level as shown in Fig. 6.  In a certain period, applying 
upper and EOQ policies can lead to the maximum loss as high as 23.84% for 99% service level while the 
maximum loss of lower policies is no higher than 18.90%.   In a span of 1,000 periods, the number of periods 
that loss is higher than the expected service level is smaller than 1%.  Therefore, the policies obtained from 
proposed approach are robust for the problem and are practical to use in real life.   

When standard deviation increases, the total cost and loss tends to increase.  Lower policies give the 
highest total cost but the lowest loss.  Normally, the upper policies tend to give the lowest total cost and 
highest loss.  Lower policies have the highest cost and lowest loss since they have bigger size of orders and 
hold more inventory than other alternatives.  The policies have the bigger size of orders because they have 
bigger differences between reorder points and order-up-to points.  On the contrary, upper and EOQ policies 
give lower total costs due to their smaller orders leading to lower holding costs.  In summary, there is trade-
off between total cost and loss.  For cost-concern, upper or EOQ policies are the preferred.  For loss-concern, 
lower policies are the best choices. 
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Fig. 4. Total cost and average loss for 4-period cycle instances at 99% service level on 1,000-period horizon. 
 

 
 
Fig. 5. Total cost and average loss for 4-period cycle instances at 95% service level on 1,000-period horizon. 
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Fig. 6. Total cost and average loss for 7-period cycle instances at 99% service level on 1,000-period horizon. 
 
5.3. Effect of On-Hand and On-Order Inventory through Inventory Policy 
 
Since system operates under periodic review and seasonal demand, some values of initial on-hand inventory 
may lead to shortage while other values may not, even though they are applied to the same ordering policy.  
The example in Table 6 illustrates that an ordering policy cannot be applied to every value of initial on-hand 
inventory. In Table 6, an order is placed at the end of each period.  The system has 1-period lead time so an 
order placed at the end of this period will be ready to use at the end of the next period.  The system A with 
1,360 initial inventory faces no shortage.  On the contrary, the system B with 4,000 initial on-hand inventory 
faces shortage at period 5. Therefore, under seasonal demand, it is better to find the proper initial on-hand 
level by letting it be a decision variable than an input parameter.  This can help the system avoid shortage. 

To implement the (𝑅, 𝑠, 𝑆) policies with predetermined initial inventory obtained from the algorithm, 

inventory managers may start using the (𝑅, 𝑆) policies first.  When the inventory position of any retailer 

reaches the required level, that retailer can start using (𝑅, 𝑠, 𝑆) policy.  After all retailers use (𝑅, 𝑠, 𝑆), the 

warehouse can use its (𝑅, 𝑠, 𝑆) policy when the echelon inventory position reaches the required level. 
 
Table 6. Example of effect of initial on-hand inventory on shortage. 
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6. Conclusion 
 
A methodology to deal with multi-echelon inventory system with seasonal demand is proposed.  Since the 
seasonal stochastic demand cannot be directly solved with a MIP model, the 2-phase methodology is 
proposed.  The first phase determines deterministic policy by solving a deterministic problem based on 
average demand and the second phase calculates safety stock by solving multiple scenarios of the problem 
generated from demand distribution.  The MIP model for the first phase is used to find reorder and order-
up-to points.  We found that there are alternative optimal solutions where multiple reorder points provide 
the same total cost.  However, these alternatives may lead to different cost in the second phase.  Therefore, 
we explore 3 different alternatives from the first phase including lower, upper and EOQ.  In the second 
phase, another MIP model is developed.  It uses reorder and order-up-to points from phase 1 as inputs and 
solves multiple randomly-generated scenarios simultaneously for safety stock that leads to the minimum total 
cost respected to required service level. 

The proposed methodology can find solutions within a reasonable amount of time (generally within 15 
minutes).  The policy with the highest reorder point tends to get the lowest cost in most scenarios but they 
face more demand loss comparing to other policies.  On average, when the upper-alternative policies is the 
best policy, it gives the total cost that is around 17% better than other policies.  On the other hand, the policy 
with the lowest reorder point tends to get the highest cost but the lowest demand loss.  The highest average 
loss from the lower-alternative policies is only 0.07% while the highest average loss from other policies is 
0.22%.   

As the problem that we considered in this paper assumed that unsatisfied demand was lost and the 
problem with lost-sales assumption received more attention recently [27], to make the problem be more 
interesting, it can be extended in various aspects such as considering shortage cost, considering ordering 
batch sizes, exploring other replenishment policies or exploring other replenishment modes.  The 
methodology can be improved as well.  The proposed methodology based upon MIP models can solve only 
limited problem size. While the problem sizes increase such as increasing in demand volume or increasing in 
the number of periods per cycle, the optimal solution may not be able to obtain using the MIP models.  
Heuristic approach should be developed to solve the problem.   
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