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Abstract. The influences of 4 wt% bismuth addition and room temperature strain on 
microstructure and mechanical properties in tin alloys were investigated in this study. 
Commercially pure tin and Sn-4%Bi alloys were fabricated by permanent mold gravity 
casting. The samples were then subjected to forging process at room temperature. As-cast 
microstructures were compared with 0.25 and 0.5 strained samples. Differential Scanning 
Calorimetry (DSC) was used to confirm the effect of bismuth on undercooling. The 
recrystallization and grain growth processes were confirmed by grain size distribution and 
misorientation study using Electron Backscattered Diffraction (EBSD). Furthermore, 
position and morphology of the bismuth precipitates were investigated by using Field 
Emission Scanning Electron Microscope (FESEM). X-ray Photoelectron Spectroscopy 
(XPS) revealed that tin oxide was the main species found on the surface of these alloys. 
There was no evidence of bismuth oxide on the surface. Furthermore, the Hall-Petch 
hardness approximation analysis revealed that there were other influences, which increased 
the hardness beyond the grain refinement effect. 
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1. Introduction 
 
Sn-Bi alloys are widely used in many applications in electronics industry owing to their mechanical properties 
that match well with the needs in the areas such as lapidary, soldering, coating, etc. Along with Sn-Ag-Cu 
alloy systems for soldering applications, Sn-Bi alloys have also been considered as low-cost and 
environmentally friendly lead-free solders [1]. In one specific application in an electronic industry, Sn-Bi alloys 
are currently used as lapping plate material in hard disk drive manufacturing process. Such process subjects 
the read-write heads of hard disk drive to prolonged, intimate, and mechanically abrasive contacts to Sn-Bi 
alloys without altering the magnetism and read-write properties of the hard disk drive heads [2, 3]. Lapidary 
process is currently adopted throughout the electronic manufacturing industry in which smooth surface is 
required for aesthetic and/or engineering reasons.    

With the melting point at 504.9 K, tin creeps at near-ambient temperature. It is well known that 
recrystallization temperature of Sn and many of its alloys are near or below room temperature. As most 
manufacturing processes are commonly carried out at room temperature, in which the mechanical properties 
of tin alloys become inevitably dynamic, detailed characterization of room-temperature effects on tin and its 
alloys are required.  

In one particular example, Sn-Bi lapping plate is subjected to a process commonly known as diamond 
charging prior to mechanical lapping process. Slurry filled with micron level abrasive diamonds is poured on 
top of lapping plates while hard ceramic charging wheel drives the diamonds mechanically into the soft tin 
land-area. Microstructural evolution of lapping plate is therefore, one of the most important factor for 
effective diamond charging. Microstructural refinement of Sn alloys has therefore been central in Sn-alloys 
research during the past recent years. One of the effective ways to achieve microstructure refinement is the 
addition of alloying element(s). For example, the addition of Co in Sn-Ag-Cu solder results in a formation of 
intermetallic CoSn3 particles in molten alloy, which thereby act as nucleation sites for βSn grains [4]. Addition 
of Mn in Mg-Zn-Ca alloy will also cause grain refinement but the controlling mechanism related to 
constitutional undercooling [5]. Furthermore, there are other processes that can be effectively used to refine 
the final microstructure including increasing the rate of cooling or rapid quenching [6], severe plastic 
deformation [7], hot forging [8], etc. There are also many indirect factors that improve embedding of diamond 
in charging process such as rotational rate of ceramic ring which is used for driving diamond abrasives into 
lapping plate, rotational rate of lapping plate, as well as temperature during charging, etc. 

Particularly for Sn-Bi alloy system, the bismuth solid solubility in tin is approximately 1-2 wt% Bi at room 
temperature. Such compositional range for Bi in tin was observed in the β-Sn phase found in eutectic 
microstructure. Insights of such tin alloy compositions and related mechanical properties are important to 
both solder application for stress-relieving purpose and lapidary application for restricted work hardening of 
lapping plate. 

 

2. Experimental Procedure 
 

Commercially pure Sn (denoted as ‘pure Sn’) and Sn-4%wtBi alloy were prepared using induction melting. 
The actual chemical composition of each alloy was analyzed by X-ray fluorescence (XRF), and the results as 
shown in Table 1. Specimens were produced by permanent mold gravity casting in borosilicate glass crucible 
at 573K (300°C), following by slow cooling down in ambient atmosphere. In order to control the equivalent 
final dimension of forged samples which were subjected to various strains, each sample was casted to different 
initial dimensions: 10 mm diameter by 2 mm thickness, 8.7 mm diameter by 2.67 mm thickness, and 7 mm 
diameter by 4 mm thickness. The samples were prepared for both commercially pure Sn and Sn-4%wtBi 
alloy. After casting, 8.7 mm and 7 mm in diameter samples were forged in die as shown in Fig. 1. The final 
dimension of forged samples has 10 mm diameter and 2 mm in thickness as shown in Fig. 2. These two 
samples were labeled 0.25 and 0.5 strain samples respectively. 

The samples were forged by a hydraulic machine with 200 kN load at 303 K, and were prepared for 
microstructure investigation by grinding with abrasive papers, with grit size of 120, 240, 360, 600, 800 and 

1200 respectively. The samples were subsequently polished with aluminum oxide 1 μm and diamond powder 

suspension 0.1 μm respectively. Then, all samples were etched by 5%vol nitol acid (5%vol nitric acid with 

methanol) for 10 second. After etching with nitol acid, only Sn-4%wtBi alloy samples were etched by 3%vol 
hydrochloric acid with methanol for 20 second. Along the preparation and characterization processes, the 
samples were conserved in desiccator at 298 K. 
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Table. 1. The composition of two alloys that use as raw material. 
 

Raw material 
Weight percent 

Sn Pb As Bi Cu Fe Ag Sb Zn Cd Al 

Commercially 
pure Sn 

99.918 0.032 0.006 0.018 0.006 0.005 <0.001 0.008 <0.001 <0.001 <0.001 

Sn4%wtBi 95.83 0.021 <0.010 4.12 0.006 0.003 <0.001 0.005 <0.001 <0.001 <0.001 

 
 

 
 
Fig. 1. Image of the actual die parts are shown on the left. Cross sectional schematic of assembled die parts 
is shown on the right with forged specimen (D). 
 

 
 
Fig. 2. Example of forged sample. 
 

After the preparation of the samples, the microstructure was investigated by an optical microscope (OM) 
to quantify number of grains and average grain size. To investigate further the bismuth precipitate 

morphology and their localities in the microstructure of Sn-4%wtBi alloy samples, Field Emission Scanning 
Electron Microscope (FESEM) (JSM-7001F, JEOL) and Energy Dispersive X-Ray Spectrometer (EDS) 
(INCA PentaFETx3, Oxford) were used. In order to understand the effect of bismuth addition on 

microstructure and melting behavior, pure tin and Sn-4%wtBi alloy samples were analyzed by Differential 
Scanning Calorimetry (DSC) (Netzsch STA449 F3 Jupiter thermal analyzer, Germany) to observe their 
undercooling characteristics. Furthermore, X-Ray Diffraction (XRD) was used for preliminary investigation 
of crystal structure, followed by Electron Backscattering Diffraction (EBSD) investigation. For 
recrystallization and grain growth, EBSD was used to investigate the orientation of microstructure as well as 
its misorientation angle distribution. The hardness of all samples was compared by Vickers Hardness to 
compare the effects of microstructure and the mechanical properties of the samples. The species of oxides 
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on the surface that occur during casting and during storage were investigated by X-Ray Photoelectron 
Spectroscopy (XPS). Time spent for sample preparations was approximately 4 weeks.  
 

3. Results and Discussion 
 
As-cast and the as-forged or strained microstructures of all samples are shown in Fig. 3. The grain size was 
analyzed by using ASTM standard with planimetic method [9]. For magnification 50X OM images of pure 

Sn samples, Jeffries’s Multiplier (𝑓) equals 0.5. For magnification 200X OM images of Sn-4%wtBi alloy 

samples, Jeffries’s Multiplier (𝑓) equals 8.0. 
 

 
 

Fig. 3. Optical microstructure images of pure Sn (a, b, c) and Sn-4%wtBi alloy (d, e, f). As cast samples were 
indexed with (a) and (d). 0.25 strain samples were indexed with (b) and (e), finally 0.5 strain samples were 
indexed with (c) and (f). 
 

Both of as-cast samples revealed a microstructure comprising mainly of tin-rich phase and almost pure 
bismuth precipitates were found along grain boundary in some area as confirmed by SEM-EDX qualitative 
analysis. The finding is in good agreement in the microstructure previously reported literatures such as R. 
Mahmudi et al. [10]. According to H.Okamoto [11], the solubility limit of Bi in Sn is approximately 1.5-2 wt% 
at room temperature. The solubility of Bi reaches maximum of 21 wt% at 139 C and sharply drops with 
temperature. It could then be expected that, under normal cooling condition, Bi atoms remain in both beta 

tin-rich matrix while some Bi precipitates would decorate along the grain boundary in the case of Sn-4%wtBi 
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alloy. The grain size of as-cast Sn-4%wtBi alloy was found to be finer than pure Sn. The average grain sizes 

of as-cast pure Sn and Sn-4%wtBi alloy samples were 191 μm and 22 μm respectively.  
It is well established that nucleation of β-Sn from Sn-base liquid alloys is generally difficult [12] since 

sufficient driving force (Gibbs free energy) is required to create high energy solid/liquid interface for a stable 
nuclei formation. This agrees well with the DSC result in this study, shown in Table 3, that undercooling of 

17.3 K is required for pure Tin. In case of Sn-4%wt.Bi alloy, as the solid β-Sn interface advances the 
concentration of the rejected Bi element in the liquid adjoining the interface is increased and its local freezing 
temperature reduced. This effect is well known as constitutional undercooling. With this solute buildup ahead 
of solid/liquid interface, the total undercooling is further increased. This could be confirmed by DSC result 

shown in Table 3 where the undercooling of 25.9 K is required for the Sn-4%wt. Bi alloy. With this increased 
undercooling, the liquid has to cool further before the solidification could proceed and thus allow for 
additional driving force for the activation of other nuclei. This results in the increased rate of nucleation and 
the more grains would be expected in the final solidified microstructure.  

Previous work also proposed a Growth Restriction Factor (GRF) which is a measure of the extent to 
which the advance of the solid interface into the adjoining liquid under the influence of a temperature gradient 
is limited by the increase in solute concentration in the area adjacent to the interface. K. Sweatman et al. [13] 
reported that addition of Bi could increase GRF in the Sn-based alloy. 

According to Table 2, the grain sizes of 0.25 strain samples for both compositions were finer than that 
of as-cast samples. During a straining process at room temperature, a fraction of mechanical energy was 
stored in the forged specimen in the combinations of vacancy defects, interstitial defects, dislocations and 
stacking faults. However such stored energy of deformation is mainly stored in the form of dislocations. In 
our case, there were three main mechanisms driven by stored deformation energy: recrystallization, grain 
coarsening and recovery. Recrystallization [14] refers to a process to form a new grain following the formation, 
and migration of high angle grain boundaries. Recovery is defined [15] as all processes involving the release 
of energy outside the realm of high angle grain boundary movement, except for the case of mean grain size 
increase driven by reduction of grain boundary area and energy associated [16]. Because of the low 
recrystallization temperature of these alloys, recovery and dynamic recrystallization could occur [17] in 
addition to microstructural homogeneity of as-forged samples.  
 
Table. 2. The grain size numbers and average grain sizes (μm) of the alloy samples at various strain. 
 

Samples grain size No. average diameter (μm) 

pure Sn 

as cast 1.827 191 

0.25 strain 2.999 127 

0.5 strain 1.904 186 

Sn-4%wtBi 

as cast 8.012 22 

0.25 strain 8.838 16 

0.5 strain 7.133 30 

 
For the case of pure Sn, the mean grain size was 191 micrometer as-cast, then reduced to 127 micrometers 

at 0.25 strain, and increased to 186 micrometers following 0.5 strain. For the case of Sn-4%wtBi, the mean 
grain size was 22 micrometers, reduced to 16 micrometers for 0.25 strain, then increased to 30 micrometers 
following 0.5 strain. It is well-known that the recrystallization temperature of pure tin is relatively low, 
therefore the samples should be carefully kept during sample preparation process. These grain size values lie 
within the range of previously reported values from the literature which confirmed that the samples were not 
completely recrystallized along the process. In order to understand the mechanism underlying the change of 
mean grain size, the distribution of high and low angle grain boundaries could shed more lights on the 
mechanisms involved.  

Broadly speaking, the system tended to reduce internal energy by reducing grain boundaries [18]. 
However the processes involved during the recrystallization could be separated in multiple steps. For example, 
following Cottrell [19], critical factor included pre-existing subgrains that were localized and highly 
misoriented angles. Such high angle grain boundaries had sufficient mobility to evolve into new strain-free 
grains. Dislocation density difference on both sides of the grain boundary could drive atoms from a more 
perfect grain into the less perfect grain. Such grain boundary movement could annihilate dislocations and 
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create also small strain-free volume. In the laboratory timescale of approximately 20 days, the microstructure 
of all 0.5 strain samples was already altered.  

To investigate crystal structure and extent of alteration of these specimens, all samples were analyzed by 
using X-ray diffraction study, followed by EBSD analysis. The main crystal system was found to be tetragonal. 
Space group number and space group were 141 and I41/amd. Lattice parameter (a, b, c) were agreeable with 
0.58332 nm, 0.58332 nm and 0.31820 nm respectively as reported in [20]. 

Orientation imaging microscopy (OIM) maps and misorientation angle distribution of as-cast, 0.25 strain 

and 0.5 strain of Sn-4%wtBi alloy samples were shown in Fig. 4. The as-cast distribution showed a degree of 
preferred orientation which may be contributed by the texturing effect of small-volume casting. When 
compared to as-cast microstructure, the reduction in size was reported in Fig. 4(c) at approximately 16-18 
micrometers. Figure 4(d) indicated the broadening in misorientation angle distribution which resembled that 
of a random distribution such as the distribution simulations by Mason et al. [21] and Mishin et al. [22]. The 
reason for such random distribution remains inconclusive whether or not recrystallization was indeed taken 
place. Textured structure was not evident in the intermediate case of 0.25 strain. This may be because the 
recrystallization process does not generate preferred orientation if the pinning effect. As reported by Doherty 
et al. [15] when a primary phase represented a large volume fraction and a secondary phase particles could pin 
grain boundaries, recrystallization process does not always end in a preferred orientation. 

As for the case of 0.5 strain samples, the mean grain size was increased while grain boundary 
misorientation distribution decreased significantly towards lower angles. Clusters of grains of similar shades 
are shown in Fig. 4(e) which suggest that new grains grow from many smaller regions already present in 
deformed microstructure. The result agrees with reported findings such as [23] and [24]. 

From the metallographic perspective, electron backscattered imaging in SEM/EDS was used to 

investigate the morphology and position of bismuth precipitates. The SEM/EDS images of Sn-4%wtBi alloy 
samples in Fig. 5 revealed the morphology of bismuth precipitates. The bright areas in SEM backscattering 
images were identified as bismuth precipitates. The gray area in SEM backscattering image was identified as 

𝛽-Sn matrix. Bismuth precipitates of as cast and 0.25 strain samples were found along the grain boundaries 
(GBs). In the majority of as-cast samples, it was confirmed that Bi precipitated along the GBs after the 

solidification of 𝛽-Sn matrix. On the other hand, many Bi precipitates of 0.5 strain samples were found in 
the middle of grains, which can be linked to the grain growth following the recrystallization process as 
discussed earlier. 

In order to investigate the effect of bismuth on undercooling, it is necessary that the two compositions 
of the Sn alloys be analyzed by using Differential Scanning Calorimetry (DSC). The DSC curves of heating 
and cooling processes were shown in Fig. 6. The increase in undercooling is usually indicated by the difference 

between the onset temperatures of heating process 𝑇𝑜𝑛𝑠𝑒𝑡(ℎ𝑒𝑎𝑡𝑖𝑛𝑔) and the onset temperatures of cooling 

process 𝑇𝑜𝑛𝑠𝑒𝑡(𝑐𝑜𝑜𝑙𝑖𝑛𝑔), as shown in Eq. (1). At any given temperature below melting point, nucleation is 

initiated by the driving force for solidification (∆𝐺𝑉), which would increase if undercooling increased. 

However, there is an interfacial energy (𝛾𝑆𝐿) which is a kinetic barrier for nucleation. Thus, Gibbs free energy 
of homogeneous nucleation is equal to negative term of driving force for solidification and positive term of 
kinetic barrier. Critical radius of nuclei which is large enough to be nucleation sites that could be estimated 
by the differential of Gibbs free energy. Equqation (2) represents the critical nuclei size (r*) which is a relative 

function of the latent heat of fusion (∆𝐻𝑠), the undercooling (∆𝑇), and the melting point (𝑇𝑚). Also, 

nucleation barrier energy (∆𝐺∗) equation could be obtained by substituting critical nuclei in Gibbs free 
energy equation. However, the nucleation, which usually occur in nature, is a heterogeneous nucleation. It 
always has other surface that can be a nucleation side such as container walls, impurity particles, grain 
boundary etc. As heterogeneous nucleation is also related to homogeneous nucleation, Gibb free energy of 
heterogeneous nucleation was estimated, as shown in Eq. (3). According to Eq. (2) and Eq. (3), the critical 

nuclei size and nucleation barrier would be decreased when (∆𝑇) is increased. 
The values from thermal analysis are shown in Table 3 along with latent heat of fusion for 

solidification (∆𝐻𝑠) which was derived from integration of area under a DSC curve during cooling process. 
The result confirmed that the undercooling was increased from 17.3 K in pure Sn to 25.9 K in Bi-contained 
Sn alloy. Thus, the addition of Bi potentially increased driving force for nucleation and thus promoted grain 
refinement. 
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Fig. 4. The orientation imaging microscopy (OIM) maps from EBSD analysis maps and misorientation 

angle distribution of as-cast (a, b), 0.25 strain (c, d) and 0.5 strain (e, f) Sn-4%wtBi alloy samples. 
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Fig. 5. SEM images and EDS points analyzed images of as cast (a, b), 0.25 strain (c, d) and 0.5 strain (e, f) 

Sn-4%wt.Bi alloy samples. 
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Fig. 6. The DSC curves show onset temperature during heating and cooling of (a) pure Sn and (b) Sn-
4%wtBi alloy samples. 
 

 
Table. 3. The result of DSC analyzation. 
 

Alloys 𝑇𝑜𝑛𝑠𝑒𝑡(ℎ𝑒𝑎𝑡𝑖𝑛𝑔) (K) 𝑇𝑜𝑛𝑠𝑒𝑡(𝑐𝑜𝑜𝑙𝑖𝑛𝑔) (K) undercooling (K) ∆𝐻𝑠 (j/g) 

pure Sn 494.3 477.0 17.3 65.23 

Sn-4%wtBi 482.8 456.9 25.9 64.77 

 

 ∆𝑇 =  𝑇𝑜𝑛𝑠𝑒𝑡(ℎ𝑒𝑎𝑡𝑖𝑛𝑔) − 𝑇𝑜𝑛𝑠𝑒𝑡(𝑐𝑜𝑜𝑙𝑖𝑛𝑔) (1) 
 

 𝑟∗ = (
2𝛾𝑆𝐿𝑇𝑚

∆𝐻𝑠
)

1

∆𝑇
 (2) 

 

 ∆𝐺ℎ𝑒𝑡
∗ =  (

16𝜋(𝛾𝑆𝐿)𝑇𝑚
2

3(∆𝐻𝑠)2 )
1

(∆𝑇)2  𝑠(𝜃) (3) 

 
Furthermore, the hardness of all samples was compared using Vickers hardness tester in order to 

understand the relationship between the effects of microstructure and the mechanical properties. The Vickers 
hardness result of all samples were showed in Fig. 7. According to Hall-Petch relations as shown in Eq. (4) 
[25, 26], the hardness of both compositions of as-cast alloys was improved after forging at 0.25 strain. After 
forging at 0.5 strain, as the microstructure of the alloys became coarser as earlier reported by EBSD and SEM 
analysis, the hardness values decreased as expected. Such range of hardness values confirmed that the 
specimens were in recovered state with similar amount of stored deformation energy. Figure 8 shows 
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hardness values that were plotted from Hall-Petch relation, comparing to experimental hardness. It was 
shown that hardness of pure Sn samples followed the hardness projection using Hall-Petch relation. On the 

other hand, measured hardness of Sn-4%wt.Bi alloy samples was 45-50% higher than the hardness trend as 
suggested by Hall-Petch relationship. This suggests that grain boundary strengthening is not the only 
mechanism. In addition to the aforementioned mechanism, there are also the effects of solid solution 
strengthening and precipitation strengthening. 
 

 𝐻𝑣 = 𝐻0 +
𝑘

√𝑑
 (4) 

 

 
 

Fig. 7. Diagram shows Vicker’s hardness of pure Sn and Sn-4%wtBi alloy samples at different strain. 
 

 
 
Fig. 8. Diagram shows comparison between experimental hardness and calculating hardness. 
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Fig. 9. XPS result of Sn-4%wtBi alloy (a, b) Bi element, (c, d) Pb element and (e, f) Sn element as (a, c, e) 
non-polished sample and (b, d, f) polished sample. 
 

In hard disk drive manufacturing process before diamond embedding process, lapping plate surface was 
lathed to smoothen the surface and to get rid oxides on the surface. This is because nanometer-thickness 
level of oxides on the surface obstruct diamond charging and alter the mechanical properties in the nano-
scale. XPS was used to analyze the oxide thickness and species. The results were shown in Fig. 9. Tin oxide 
and small amount of contaminated lead oxide were founded on the surface of these alloys. Bismuth did not 
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form bismuth oxide on the surface. Binding energies of Sn 3d5/2 in SnO and SnO2 are about 486.5 eV and 
487.2 eV respectively [27, 28]. Binding energy of Bi 4f7/2 in Bi metal is about 157.0 eV [29]. XPS result of Pb 
is not obvious because of its low content. However, binding energy of Pb 4f7/2 in Pb oxide may assume that 
deviation from Pb metal is about 1.5 eV [30]. From the thermodynamic view point, Gibbs free energy for 
oxide formation of lead has a lower value than those of tin oxide and bismuth oxide. Aside from SnO2, after 
polishing, the surface of samples also revealed another species of tin oxide corresponding to SnO. This agrees 
well with the literature as SnO2 prefers to form at higher temperature near 573K (300°C) while SnO forms 
at room temperature [31]. 
 

4. Conclusion 
 
The microstructure and mechanical properties of pure Sn and Sn-4%wtBi alloy samples produced by 
permanent mold gravity casting and forging process were investigated. The addition of 4 wt% Bi into the Sn 
alloy showed grain refinement effect. Bi precipitates were found along grain boundaries for as-cast samples. 
At 0.25 strain, the deformation energy may not be enough for driving recrystallization at room temperature 
however, when the strain reaches 0.5, there were evidences for grain growth and clustering of grains of similar 
grain boundary misorientation angles. As a result, coarser microstructure was found for the case of 0.5 strain 
samples. For all cases, as grain sizes decreased, the hardness values increased, following the Hall-Petch 
relationship. However, in Sn-4%wt.Bi alloy the hardness values were also contributed by solid solution and 
precipitation strengthening mechanisms. SnO2 and Pb oxide were found on the surface of these alloys after 
casting process. Pb content remained however in just the trace level. After polishing, SnO was found on the 
surface as it could be formed at the room temperature. Bi oxide was not found. 
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