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Abstract. Pairwise testing is a widely used technique for software testing with the reduced 
size of the test suite and able to detect interactions that trigger the system’s faults. In addition, 
pairwise testing test suites must be able to take constraints between input parameters and 
parameter values into account. In current practice, identifying and selecting input parameters 
and parameter values usually depends on tester skills that might not be sufficient. Input 
parameters and parameter values modeling and tools for easily guiding and prioritizing the 
selection of optimal input parameters and parameter values for the SUT is also required. In 
this work, we present an approach for prioritizing input parameters and parameter values 
modeling using statistical user profile. Our approach is implemented in a tool called 
UPPTCT which provides the ability to handle constraints on input parameters and 
parameter values for pairwise testing in order to generate test cases. We conduct experiments 
to evaluate test case effectiveness and compare our tool with other renowned pairwise test 
generation and constraints handling tools. The experimental results show that the 
effectiveness of our approach is significantly more efficient and effective than random 
testing as a large portion of reported defects with regard to statically user profile were caught 
by our approach. Furthermore, our tool performs better in some cases and performs 
comparable results for generating test cases upon input parameters and parameter values for 
both with constraints handling and without constraints handling. 
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1. Introduction 
 
Software testing is one of the important activities in software development process, it requires more than 
roughly half of the budget in the total estimated. Modern software systems are designed and intended to run 
on various platforms and environments. Consequently, a software system can be installed in a different type 
of platform configurations under different hardware setup and run on the different operating system. Testing 
on a high configuration software systems is challenge because software systems tend to be more complicated 
in term of an enormous possible number of test configurations that need to be tested and verified. 
Nevertheless, verification and validation on software system are needed to ensure the correctness and high 
quality of product value before delivering. Due to budget and time constraints, exhaustive testing in such a 
modern software system is practically impossible as it requires extensive efforts and excessive resources [1, 
2].  

Recent researchers suggest that a particular one of the widely practical used combinatorial testing 
technique is pairwise testing, it grew into extensive use and has been proved a useful technique for software 
testing and fault detection [3, 4]. In addition, using a combinatorial testing technique not only detect more 
defects but also reduces time for designing test cases for a specific system under test (SUT) and significant 
cost and resources savings [5]. Pairwise testing produces a small test suite that can reduce the cost of testing 
and helps to detect interaction defects which are constructed by the combination of relevant input parameters 
and parameter values. 

Practical software systems usually have constraints between the combination of parameters and 
parameter values, resulting in more or less combination between parameters and parameter values are often 
not valid and cannot be tested. Constraints between parameters and parameter values must be set by a tester 
before test case generation and must be taken into account during test case generation or after test case 
generation. 

The most important step in combinatorial testing is input parameters and parameter values modeling. It 
is very ambitious to identify and select an optimal input parameters and parameter values for a SUT. An 
empirical research shows that identifying and selecting input parameters and parameter values is a creative 
process which cannot be completely automated [6]. Different testers would think of various models 
depending on their creativity and experiences [7]. To our knowledge, there is currently no adequate empirical 
results, scientific recommendations, or any strong theoretical technique to formulate an optimal set of input 
parameters and parameter values. Therefore, a user profile was found and used to indicate the frequency of 
a software system execution. By applying statistical user profile, a goal-oriented testing that has been found 
the most ideal approach that would help us to prioritize testing effort related to the actual usage of the 
software system and how often of the software system is being used [4, 8, 9]. As a result, we can dispose of 
each individual tester skills. 

In this paper, we propose an approach and a tool to prioritize input parameters and parameter values 
modeling based on statistically user profile and also provide the ability for constraints handling on input 
parameters and parameter values using pairwise testing to generate test cases. Our rationale for conducting 
this research is to bridge the gap between dependency of each tester skills and techniques to formulate an 
optimal set of input parameters and parameter values. 

The remainder of this paper is structured as follows: Section 2 briefly reviews the background and related 
works. Section 3 describes our proposed modeling approach. Section 4 gives descriptions and the 
functionalities of our tool implementation. Section 5 reports the experimental results. Finally, section 6 
provides conclusion and plan for future work. 
 

2. Background and Related Work 
 
2.1. User Profile 
 
A user profile is an accumulation of settings and information related to a user to run the software which is 
being tracked. It can be characterized as a user identification with respect to operating environments such as 
platform, operating system, software applications, hardware, or additional description [10, 11]. 

A user profile is used to demonstrate relative execution frequencies of a software to be used. With a user 
profile, a software can be tested more efficiently because testing can focus on the most frequently used 
operations by establishing relative weights that allows testing efforts to be distributed according to the usage. 
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It is the most ideal approach that would guarantee that a software is delivered with maximized reliability 
because the most used of user profiles will be tested the most [12]. 

The construction of user profile is one of the most important processes in SUT and it requires huge 
amount of efforts from testers that have the system specifications, application workflows, and application 
domains expert knowledge of SUT. Testers can analyze the user profiles that represent the dynamic usage 
characteristics and provide statistical information of SUT, and it is automatically generated from the 
production environment which is always up to date. 

Tomohiko Takagi and Zengo Furukawa [13] presented a novel construction technique of a huge 
operational profiles concerning to effectively apply statistical testing to the large software project is 
implemented on a tight schedule by constructing elemental operational profiles, small operational profiles 
that represent usage characteristics of components of SUT. The key idea is that an operational profile of the 
whole of SUT is too extensive to be built physically, but operational profile of the components of SUT are 
small so that it is easy to be constructed. 

John D. Musa [14] stated that the user profile can be developed in two forms which are explicit and 
implicit. For an explicit profile, each of operation is completely described with the values of all of its attributes, 
occurrence probabilities are explicitly assigned to each operation. For an implicit profile, occurrence 
probabilities are implicitly assigned to each of operation separately by determining occurrence probabilities 
for the values for each attribute. Note that the operational attribute values and their related occurrence 
probabilities yield a sub-profile for each operational attribute.  

If an explicit operational profile has been designed, the test cases can be selected efficiently due to the 
fact that the most frequency used of operational profile will be tested the most. If an explicit operational 
profile has been designed, key input variables and their related values have been selected according to their 
occurrence probabilities that must be tested [12]. Additionally, he classified operations in two categories 
which are frequent and infrequent and critical operation [15].  

K. Saravana Kumar and Ravindra Babu Misra presented four categories of operations which are (1) 
frequent and critical operation, (2) frequent and non-critical, (3) infrequent and critical, and (4) infrequent 
and non-critical.  

According to John D. Musa [14], there are several benefits for applying user profiles. (1) Increase user 
satisfaction by catching their needs more accurately, (2) Satisfy important user needs quicker with operational 
development, (3) Reduce costs with decreased operational software, (4) Speed up development and enhance 
productivity by allocating resources into the criticality one, (5) Guide distribution of review efforts, (6) Reduce 
system risk with more reasonable testing, (7) Make testing quicker, (8) Help turn the system architecture to 
user and criticality, (9) Make performance evaluation and management more accurate, and (10) Guide 
development of better manuals and training. 

In this paper, we describe a user profile as a set of settings and information related to a user and the SUT. 
It can be characterized as the explicit representation of the identity of the user concerning the platform, 
operating system, software applications, and also hardware information. User profile must be collected and 
prepared into the system for the purpose of analyzing and prioritizing test cases. The user profile can be in 
both two forms which are explicit and implicit, also can be classified operations in several categories which 
are frequent, infrequent, critical, non-critical, and the combination of operation. 

An example of a user profile which is retrieved from the database. The user profile comprised of a large 
number of configuration parameters for a system that is designed to execute on a different platform as shown 
in Fig 1. 
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Fig. 1. Example of user profile. 
 
2.2. Pairwise Testing 
 
Pairwise testing is a combinatorial testing technique for generating a test suite that is relatively small, while 
the input values are enormous [16]. Pairwise testing generates test cases which test all combinations by 
choosing an individual pair of all possible input parameter values. A pairwise test case requires that every pair 
of input parameters has to be exercised and covered by at least one test case. 
 
Table 1. Example of platform configuration. 
 

Parameter Parameter Value 

Operating System 
Windows 
Mac OS 

Web Browser 

Mozilla Firefox 
Internet Explorer 
Opera 
Google Chrome 

Database 
SQL Server 
Oracle 

Microsoft Office 
Office 365 32-bit 
Office 2013 64-bit 
Office 2010 32-bit 

 
The concept of pairwise testing is best illustrated by an example in Table 1. The example considers a 

system that intends to operate on a multiple of platforms. The system must function correctly with four 
parameters on two Operating System (Windows and Mac OS), four Web Browser (Mozilla Firefox, Internet 
Explorer, Opera, and Google Chrome), two Database  (SQL Server and Oracle), and three Microsoft Office 
(Office 365 32-bit, Office 2013 64-bit, and Office 2010 32-bit). As a result, there are 2 × 4 × 2 × 3 = 48 
possible test platforms in order to test all combinations. However, there are only 12 test platforms covered 
all the pairwise interactions between different parameters of the system. 

Empirical results shown that software defects are caused by a single input parameter or a combination 
of a few input parameter values [17, 18]. 
 
2.3. Constraint Handling 
 
Practical software regularly has constraints between input parameters and parameter values that can be 
combined into a test case. In software testing, some combinations between input parameters and parameter 
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values are commonly infeasible and unachievable in practice for executing in the SUT which will yield 
expensively false positives. Moreover, the pairwise testing technique does not provide a solution for handling 
the constraints between input parameters and parameter values, the testers have to review the test cases from 
pairwise testing and delete invalid test cases manually themselves [19]. For example from Table 1, consider 
that Internet Explorer cannot be executed on Mac OS so the operating system must not be Mac OS. This 
gives a constraint that Internet Explorer and Mac OS must not appear in any test case into account. 

According to Changhai Nie and Hareton Leuang [20], constraints normally happen in most of the 
software that are caused by some invalid combinations of parameter values. The existence of constraints 
increases the difficulty in applying combinatorial testing since (1) Most existing test generation methods 
cannot deal with these constraints, and eventually ignore them all. Due to the fact that ignoring constraints 
might lead to the generation of the test suite is not valid, impractical test planning, and wasted test effort. (2) 
It is not easy to design a general algorithm for test generation considering the constraints. (3) Even a few 
number of constraints may impact an enormous number of invalid configurations. When the generated test 
suite contains many invalid test cases, this will cause a decreased in combination coverage. (4) Complicated 
constraints may exist in the SUT, also multiple constraints can interact to generate additional implicit 
constraints. It is both time consuming and highly error prone to manually deal with constraints in test suite 
generation. Thus, proper handling of constraints is a key issue we must address in test suite generation. 
However, it is better than ignoring constraints even the number of test cases might increase or decrease from 
pairwise testing after constraints have been applied.  

Sunint Kaur Khalsa and Yvan Labiche [21] presented a survey of available algorithms and tools for 
combinatorial testing. They showed that there are four mechanisms for handling constraints (1) Handle 
constraint before executing a test generation. (2) Replace invalid test cases with valid ones after a test suite 
has been generated using a specific technique [12]. (3) Integrate constraint handling into the Covering Arrays 
generation algorithm with an ad-hoc procedure. (4) Integrate the selection of valid tuples by integrating a 
Satisfiability Solver. 

Mats Grindal, Jeff Offutt, and Jonas Mellin [22] presented constraint handling strategies for input 
parameters models by using combinatorial testing strategies to select test cases. Four new constraint handling 
methods have been presented. Start with the abstract parameter and sub-models methods result in generate 
conflict-free input parameter models. The avoid method makes sure that only conflict-free test cases are 
selected during the test case identification and selection process. Finally, the replace method removes conflicts 
from selected test cases. 
 

3. Proposed Modeling Approach 
 
This section describes the proposed approach of prioritizing input parameters and parameter values as well 
as constraints modeling. There are two components for modeling the pairwise testing which are input 
parameters and parameter values, constraints among input parameters and parameter values. Each 
component is described separately in the following subsections. 
 
3.1. Input Parameter and Parameter Value Modeling 
 
Identifying input parameters and parameter values is an important step in pairwise testing. It is very difficult 
to identify optimal input parameters and parameter values for the SUT. It has been established that identifying 
input parameters and parameter values is a creative process that cannot be completely automated [6]. 
Different testers would think of various models depends on their creativity and experiences [7]. To our 
knowledge, there is currently no adequate empirical results, scientific recommendations, or any strong 
theoretical technique to formulate an optimal set of input parameters and parameter values. Therefore, we 
propose an approach to identify optimal input parameters and parameter values by using statistical user 
profile. Using statically user profile has been found as the best ideal approach that would assist testers to set 
an appropriate priority of testing and ensure that most of the actual usage the SUT has been tested [8, 9]. 
 
3.2. Constraints Modeling 
 
Constraints are a truly essential aspect of the SUT because testers can define the explicit exclusion or inclusion 
on some combinations between input parameters and parameter values for the purpose of customizing and 
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reducing the size of the generated test suite. For example, if they are invalid, they must be excluded from the 
generated test suite. 

Constraints between input parameters and parameter values must be identified and set by a tester before 
considering test case generation and after the process of input parameters and parameter values formulation. 
Constraints can be set as a form of logical expressions and rules. The logical expression and rules define a 
condition that must be achieved by every test case and must be performed correctness checking during test 
case generation whether a combination of identified parameters and parameter values or a test case violates 
the constraints or not [3, 4, 23]. The form of logical expression and rule can be converted from one to another 
as shown in Table 2. 
 
Table 2. Example of constraint types. 
 

Logical 
Expression 

Term and Rule 

AND 
AND - connects two parameter and parameter value conditions and 
returns true only if both conditions are true 

OR 
OR - connects two parameter and parameter value conditions and 
returns true if either condition is true or if both conditions are true 

= 
EQUAL TO – parameter can never be combined with parameter values 
for all the other parameters 

!= 
NOT EQUAL TO – parameter can be ever combined with values for 
the other parameters 

 

4. Tool Implementation 
 
We have focused on the propositional reasoning ability of using statistical user profile prioritization based on 
input parameters and parameter values for pairwise testing strategy. We have therefore developed a tool that 
performs constraint handling by using pairwise testing to generate test cases using statistical user profile based 
prioritization from input parameters and parameter values of our proposed approach, named “User Profile 
based Pairwise Test Case Generation Tool (UPPTCT)”. 

Figure 2 illustrates a snapshot of our proposed approach and how our tool works. Our approach and 
tool involve three steps which are described separately in the following subsections. The number of each 
subsection corresponds to the number of each step. 
 

 
 
Fig. 2. Overview of our tool. 
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4.1. Identify Input Parameters and Parameter Values 
 
Input parameters and parameter values identification start with an analysis of the behavior of the SUT. Input 
parameters and parameter values for generating test case can be analyzed and identified from the user profile 
which is retrieved from the database and always keeps up to date. In this paper, the user profile requires a 
form of comma-separated values (CSV) format file type that allows uploading into the tool.  The CSV file 
can be exported from any modern database where each row represents an input parameter value and each 
column represents an input parameter. The user profile file is an input to the tool for identifying input 
parameters and parameter values in order to generate test cases. 

The imported user profile contains enormous amounts of information. Consequently, all information is 
not related and relevant to the SUT. In order to properly identify the most important input parameters and 
parameter values which impact the test focus. A tester is responsible for considering on input parameters and 
parameter values that are relevant, related, and interested for the SUT. 
 

 
 
Fig. 3. Example of identified input parameters for SUT. 
 

For example, Fig 3 will be used as running example in the remainder of this paper. It shows input 
parameters for the SUT to be executed on a multiple of platforms. Five parameters have been identified from 
the input user profile that are relevant, related, and interested by a tester as it covers the most critical 
functionalities for the SUT which are Operating System, Browser Version, Microsoft Office, Color Depth, 
and User Rights. 

The identification of an optimal number of parameter values from identified parameters on the most 
highly usage parameters requires a statistical strategy for analyzing and interpreting. The parameter values of 
identified input parameters are automatically calculated by the total number and the percentage of users and 
ordered by the summation of the most highly usage from the input user profile by the tool. This tool could 
help to guide the identification of the optimal input parameter values. By means of this, the testers can identify 
the most important values with a high frequency usage characteristics from testing point of view. It also 
allows testers to know the most appropriate test cases which will be generated and executed. In addition, it 
indicates the usage characteristics of the SUT statistically. From the identified input parameters for the SUT 
in Fig 3, the most frequently used is 10 percent and most of the users have been identified and selected as 
input parameter values by the tester as shown in Fig 4. The result of input parameters and parameter values 
that have been identified and formulated for the SUT are shown in Table 3. 
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Fig. 4. Example of identified input parameter values for SUT. 
 
Table 3. Identified input parameters and parameter values for SUT. 
 

Parameters Parameter Values Number of Users % 

Operating System 

Windows 10 Pro 64-bit 25,595 45.96% 
Windows 8.1 Pro 64-bit 11,399 18.32% 
Windows 7 Enterprise 64-bit 6,948 11.17% 
Windows 7 Professional 32-bit 6,363 10.23% 

Browser Version 
Internet Explorer 11 42,034 67.56% 
Internet Explorer 8 8,676 13.95% 
Internet Explorer 9 7,019 11.28% 

Microsoft Office 
Office 2010 32-bit 31,639 50.85% 
Office 2013 64-bit 11,255 18.09% 
Office 2013 32-bit 8,011 12.88% 

Color Depth 32 bits 60,361 97.02% 

User Rights 
Standard Account 39,018 62.72% 
Administrator account (restricted) 14,200 22.82% 
Administrator account (elevated privileges) 8,404 13.51% 

 
4.2. Set Parameters and Parameter Values Constraints 
 
Sometimes combination between input parameters and parameter values might not be valid hence it must be 
excluded from the resulting test suite. Constraints between identified and selected input parameters and 
parameter values need to be set by the tester before taken the constraints into account and after test case 
generation for the purpose of handling invalid test cases. 

Our tool provides the ability to set constraints between identified and selected input parameters and 
parameter values that each generated test case must achieve a given set of constraint from the tester. At 
present, we support two effectively handle different types of constraint specifications which are logical 
expressions and rules as described in Section 3 and each type can be converted from one to another. There 
are two features available for constraints handling of the tool. The features are briefly explained as following. 
 
4.2.1. System constraint 
 
Ability to eliminate invalid combination that never happens in practice, misleads results, and any invalid 
combination must be excluded from the generated test suite. System Constraint can be elicited from business 
requirements, business rules, or system requirements specifications. Consider the example in Table 3, the 
combination between Windows 7 Professional 32-bit and Office 2013 64-bit is impossible to occur and must 
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not be generated as a test case due to the fact that Microsoft Office 64-bit version cannot actually be installed 
on 32-bit Operating System but it can be installed only on 64-bit Operating System. System Constraint will 
be identified in form of invalid pair value and it can be separated by entering a new line as shown in Fig. 5. 
 

 
 
Fig. 5. Example to set system constraint for SUT. 
 
4.2.2. Application constraint 
 
Ability to handle with a specific and complex constraint for a specific SUT between identified input 
parameters and parameter values. By determining the necessary conditions to generate test cases whether it 
needed or not in order to decrease the size or customize the resulting test suite. Our tool allows testers to 
identify the identifying constraint ongoing process before starting test case generation as they may require 
inclusion or exclusion set of test cases for a specific testing. Considering the example in Fig 4, the most 
frequently used on operating system and browser is Windows 10 Pro 64-bit and Internet Explorer 11 
therefore this test platform is generated as a critical scenario, while Windows 10 Pro 64-bit and Internet 
Explorer 9 is eliminated test case. Figure 6 illustrates the sample of application constraints for operating 
system and browser as previously mentioned. 
 

 
 
Fig. 6. Example to set application constraints for SUT. 
 

The application constraint will take into account once the test case has been generated using replace 
technique [12] which causes the resulting test suite satisfies the application constraints and also satisfies 
pairwise coverage. 
 
4.3. Generate Test Suite 
 
For the step to generate test case from information provided by the tester, our tool gathers and formulates 
all information including identified input parameters and parameter values and defined constraints for test 
case generation.  

Test case generation begins with the initial combination of two parameters and parameter values, repeats 
matching the first two parameters and parameter values until all the pair parameter values are covered then 
starts the next parameter. Then, continuing to perform the next iteration of combination step until all the 
input parameters and parameter values from Fig. 4 are covered. The resulting test suite consists of infeasible 
test cases correspond to invalid test case as shown in Fig. 7. 
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Fig. 7. A test suite obtained from pairwise without constraint handling. 
 

Considering Fig. 7, there are two invalid test cases in the resulting test suite which are #TC3 and #TC9. 
Those test cases are not possible to execute on the given SUT and need to be manipulated by applying 
identified constraints into account. 

Our tool is developed based on the replace mechanism. It builds on the concept of invalid test cases to 
be replaced after the test suite has been generated completely to maintain the test coverage of the test suite. 
To verify generated test suite, we perform correctness checking to ensure if all the identified constraints are 
satisfied. Searching for the invalid test case in the test suite, the invalid test case is cloned if found. In each 
clone, one or more of the identified parameter values which violate one or more constraints will be changed 
to another identified parameter value that is removed as the invalid test case. Then, continuing to perform 
the next iteration on replacing step until all of the generated test cases are covered. Moreover, if the invalid 
identified parameter values work on the same test case, the invalid test case will be removed right away to 
ensure termination. The resulting of the final test suite that is applied constraints handling as shown in  
Fig. 8. 
 

 
 
Fig. 8. A final test suite generated from pairwise with constraint handling. 
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5. Experimental Results 
 
Our experiments consist of two parts. The first part is to compare our tool with other known pairwise test 
generation and constraints handling tools. The second part is designed to evaluate the test case effectiveness. 
 
5.1. Comparison with Other Tools 
 
In this section, we compare our tool with other three existing well-known representative test case generation 
tools. We first compare our tool with constraints and without constraints. The comparison helps us to see 
that our tool works as expected concerning other tools and strategies. Regarding our tool is implemented 
based on constraints handling, it is important to note that some of the existing tools are not available to 
perform the experiment and existing work does not compare the number of generated test cases with 
constraints handling. It is very difficult to compare our tool with existing available tools as it relies on the 
number of input parameters and parameter values. We briefly introduce the existing test case generation tools 
with constraint handling supported we use. 

ACTS [24] or Advanced Combinatorial Testing System is a combinatorial test generation research tool 
developed by National Institute of Standards and Technology (NIST) and University of Texas at Arlington. 
No license is required and there are no restrictions on distribution or using the tool. ACTS generates test sets 
in t-way coverage of input parameter values and supports constraints and variable-strength tests. 

PICT [25] or Pairwise Independent Combinatorial Testing is a pairwise test generation reach tool 
developed by Microsoft Corporation. A free pairwise testing tool runs as a command line and support 
constraints handling. 

CTWeb [26] is a pairwise test generation research tool developed based on PROW algorithm (Pairwise 
with constRaints, Order, and Weight). 

Our comparison uses 7 examples of different input parameters and parameter values and constraints 
taken from the available published literatures. The number of generated test cases with constraints and 
without constraints for each example is shown in Fig. 9. 
 

 
 
Fig. 9. Comparison of other tools. 
 

From the result in Fig. 9, we can observe that our tool, UPPTCT, performs superior in some cases and 
perform equivalent results for generating test cases from input parameters and parameter values with 
constraints handling and without constraints handling. The outperformer on both with and without 
constraints cases are Online PC Retailing System and Messaging System which is approximately 28.57%. 
 
5.2. Evaluation of the Test Case Effectiveness 
 
In this section, we evaluate the defect detection ability of the generated test suite from our tool. To compare 
test case effectiveness from our approach and random testing, we used the same input parameters and 
parameter values of the SUT obtained from 62,214 records of the real user profile. 

We use the real production defects that had been logged over the past 6 months after released a new 
version of the product as a representative, there were 958 defects reported from the customers. We analyzed, 
classified, and enumerated defects that have interactions cause based on the defect description.  We found 
that 211 defects reported in total are interaction defects between one or more parameters and can be 
categorized into 4 groups of interaction as shown in Table 4. 
 



DOI:10.4186/ej.2017.21.7.389 

400 ENGINEERING JOURNAL Volume 21 Issue 7, ISSN 0125-8281 (http://www.engj.org/) 

Table 4. Defects distribution and classification. 
 

# Interaction Group Interaction Defects Reported 

1 OS and Internet Explorer 22 
2 OS and Microsoft Office 33 
3 OS and Antivirus 18 
4 Application and Web Browser 138 

Total 211 

 
We use the same number of test suite obtained from our tool comparing with 5 random testing test suites. 

The numbers of test cases in random testing are the same numbers of test cases generated by our tool. We 
selected the most frequently used at more than 10%, 20%, 30%, 40%, and all users respectively as a set of 
extrapolated from the user profile. It is necessary to mention that the real user profile we use contain 
maximum value generated test cases which are 40% of users as shown in Fig. 10. 
 

 
 
Fig. 10. Comparison of defects detection. 
 

Preliminary findings from our results in Fig. 10 shows that the effectiveness of our approach is 
significantly higher than random testing. A large portion of reported defects being caught with regard to 
statically user profile by our approach comparing with test case generated from random testing. We see 
evidence of correlations between the user profile and defects as the majority of reported defects from the 
customers which are predicted to be the most frequency used obtained from the user profile statistically. 
With a high frequency usage from the user profile turns out to be really important as a guideline for test case 
generation, the test cases can be generated straightforward corresponding to the statistical user profile that 
could be detected the majority of defects. 

Our further analysis demonstrates the ability to detect defects depends on the range of selected user 
profile for generating test cases. It can be seen that the number of generated test case decreases markedly, at 
the lower range of selected user profile. As a result, there is a significantly strong relationship between the 
number of selected user profile, the number of generated test cases, and the number of defects detection. 

Similar results of additional research about applying statistical user profile have been conducted. Applying 
statistical user profile approach is exceptionally valuable in improving the software quality and reliability in 
reduce testing efforts and also reduce the software development cost [8, 12]. Moreover, implementing the 
automation to collect the user profile would help reduce in human errors as the user profiles are the most 
important part of the approach and therefore require special attention from testers [9, 13]. 
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6. Conclusion and Future Work 
 
In this paper, we have presented the approach and tool to prioritize input parameters and parameter values 
modeling based on statistically user profile and also provided the ability for constraints handling on input 
parameters and parameter values when using pairwise testing to generate a test suite. The process of 
identifying input parameters and parameter values and constraints defined from a user profile still requires 
testers to get involved in and provide decision making for determining the percentage of the combinations 
between identified input parameters and parameter values.  

At the most frequently used of the user profile turns out to be the most important in guiding testing the 
SUT that could help detect the majority of defects. Therefore, if our approach is used, the number of defects 
escape to the production environment and found by customers will decline. Our analysis shows that our 
approach can help testers focus on what important for the SUT is, and allows testers to provide decision 
makers with statistically defensible options based on an understanding of the statically user profile for testing 
the specific technical interest and user perspective. Using a high percentage of the most frequency usage from 
the user profile helps the tester on identifying and selecting the optimal input parameters and parameter 
values to generate test cases by gathering high frequency used from user profile statically. The most frequently 
used has been tested the most and is more likely to capture defects with a comparatively small number of test 
cases than other testing strategies. 

There are several directions for the future work. We would expand an experiment with a large scale of a 
user profile in the real world system. Ultimately, we would like to apply other data on user profiles for 
prioritizing input parameters and parameter values instead of using only frequency usage as a statistical 
approach. 
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