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Abstract: Among equations representing motion of a mass or a particle in physics, many 
of them are anharmonic and consist of one or more nonlinear terms. This article shows 

how to obtain series solutions of the equation of the form 
2"( ) [ ( )] ,y t y t c   which is 

an anharmonic motion equation. The authors focus the effort on the case with 

0, (0) 0, '(0)c y y   constant and use of the Taylor’s series method; this sets the 

article apart from those of other authors who did similar works in the past. The series 

solution obtained under the indicated conditions is of the form 
1 3

3
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n

y t a t
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
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 which 

does not appear very often in general mathematical functions. 
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1. Introduction 
 
Many researchers have studied anharmonic motions since a long time ago. For example, Helmholtz [1] 
studied the vibration of the eardrums and set up a mathematical model for the motion as  
 

 
2 2"( ) ( ) [ ( )] ... 0y t y t y t t                                                 (1) 

 
and Rayleigh [2] continued the study and specified the initial conditions for Eq. (1) as follows: 
 

(0)y A  and '(0) 0y                                                         (2) 

 
This has resulted in the problem being called Rayleigh problem [3]. Other researchers who studied and 
solved anharmonic motion equations later on are, for example, Shidfar and Sadeghi [4], Chouikha [5, 6], 
Apostol [7], and Amore and Fernandez [8]. 

Another anharmonic motion equation similar to Eq. (1) is the Duffing equation, whose general form is  
 

2 3"( ) ( ) [ ( )]y t y t y t                                             (3) 

 
Researchers who studied or solved this equation are, for example, Shidfar and Sadeghi [9], Apostol [7], and 
Harko et al. [10]. 

In solving such nonlinear equations as Eqs. (1) and (3), most researchers used the Frobenius method by 

assuming the solution in terms of a power series of the independent variable t , i.e., 
0

( ) n

nn
y t a t




  or 

that of sin( )t , i.e., 
0

( ) sin ( )n

nn
y t a t




 . Then they determined the recurrence relation among the 

coefficients 0 1 2, , ,...a a a by finding the second derivative of ( )y t  in power series form and substituted it 

in the associated equation.  Moreover, the researchers mentioned above were only interested in the series 

solution to the equation that is subject to the initial conditions (0) constant, (0) 0y y  , ignoring the 

solution subject to the conditions (0) 0,y   (0) constanty  .  

In this paper, the authors present series solutions to the anharmonic motion equation 
2"( ) [ ( )] ... 0y t y t c t   , which is a special case of the more general ( )y t  ( ) ( )f y g t  [6], but we 

focus on obtaining the solution by using the Leibnitz-Maclaurin method, which uses the Taylor’s (or 
Maclaurin’s) series and determines the coefficients directly from the derivatives of the dependent variable. 
Moreover, we will consider two cases of the initial conditions for the solutions, one being 

(0) constant, (0) 0y y   and the other being (0) 0; (0) constanty y  , each corresponding to a 

particular solution. This paper will then serve as a verification for the solutions obtained by previous 
researchers and at the same time bridge the knowledge gap left by them. 

Firstly the authors start with a special case of 0c  , that is, we start with 
 

2"( ) [ ( )] 0 ... 0y t y t t                                   (4) 

 

This equation can be obtained from Eq. (1) by setting 0  and 1  . Later on we will consider the 

equation 
2"( ) [ ( )] 0 ... 0y t y t c t    .  

 
2. Series Solution by the Frobenius Method 
 
The standard form of a series solution for Eq. (4) can be expressed as 
 

0

( ) r n

n

n

y t a t






                       (5) 
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By substituting ( )y t in Eq. (5) into Eq. (4) we obtain 

 
2

2
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 

  

 

 
     

 
                              (6) 

 
which, when expanded in various powers of t , yields 
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                                      (7) 

 

Considering the term with the lowest power of t  in Eq. (7) with the conditions that 2 2r r   (or, 

equivalently, 2r   ) and 0 0a  , we obtain ( 1) 0r r   , which yields 0r   or 1r  . The case of 

0r  gives the first solution 
0

( ) n

n

n

y t a t




 in accordance with the initial conditions 0(0)y a  and 

1(0)y a  . If we specify that 0 0a   and 1 0a  , the whole series obtained will yield the complete general 

solution, which consists of two independent component series, one  multiplied by 0a  and the other 

multiplied by 1a . On the other hand, the case of 1r   gives the second solution 
1

0

( ) n

n

n

y t a t






  in 

accordance with the initial conditions 
 

(0) 0y   and 0'(0) 0y a                         (8) 

 

This second solution is the special case of the first solution when 0 0a   and 1 2 3, , ,...a a a  are replaced 

with 0 1 2, , ,...a a a , respectively. 

 

(1) Case of 0r  :  Eq. (7) is reduced to  

 

2
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a a t a a t a a t

a a t a a t a a t

      
 
     
 
    
 
    
       

                                              (9) 

 

which, when we equate the coefficients of ( 0,1,2,...)kt k  to zero, yields relationships among various 

coefficients in Eq. (5) as follows: 
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2
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     (10) 

 

Now if we apply the condition '(0) 0y   from Eq. (2) by setting 1 0a  , Eq. (10) is reduced to 
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 
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 
  

    (11) 

 
which, when substituted into Eq. (5),  gives the first solution to Eq. (4) as  
 

2 2 3 4 4 6 5 8

0 0 0 0 0( ) ( / 2!) (2 / 4!) (10 / 6!) (80 / 8!) ...y t a a t a t a t a t                         (12) 

 

(2) Case of 1r  : Eq. (7) is reduced to 
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       

                                           (13) 

 

which, when we equate the coefficients of ( 0,1,2,...)kt k  to zero, yields  
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  (14) 

 

From Eq. (14) we find that only 0 3 6 9, , , ,...a a a a or 3 ( 0,1,2, ...)ka k  are not equal to zero. And 

when we substitute these coefficients into Eq. (5) with 1r  , we find the second solution to Eq. (4) as 
 

2 4 3 7 4 10

0 0 0 0( ) (2 / 4!) (20 / 7!) (600 /10!) ...y t a t a t a t a t                              (15) 

 
which apparently has not been shown by other authors. 
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We can show that this second solution, with 1r  , is the special case of the general solution with 

0r   when 0 0a   as follows: 

In Eq. (10), if we set 0 0a  , we obtain for the first few terms of the series 
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 
 

 

 

and the solution becomes 
2 4 3 7

1 1 1

0

( ) (2 / 4!) (20 / 7!) ...n

n

n

y t a t a t a t a t




     , which, when 1a  is 

replaced with 0a , verifies the second solution, with 1r  , in Eq. (15). 

 
3. Series Solution by the Leibnitz-Maclaurin Method 
 
Since the value of r  in Eq. (7) is 0 or 1, Eq. (5) as solution to Eq. (4) will be a Taylor’s (or Maclaurin’s) 
series, whose general form is  
 

 

(4)
2 3 4"(0) "'(0) (0)

( ) (0) '(0) ...
2! 3! 4!

y y y
y t y y t t t t

    
         

     
                           (16) 

 

where 
(4) (10)"(0), "'(0), (0),..., (0)y y y y can be obtained by successively taking derivatives of Eq. (4)   in 

accordance with the Leibnitz-Maclaurin method as follows: 
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In general we obtain the following relationships:  
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where 2n  and 
 

!

! !

m m

k k m k

 
 

 
 is the binomial coefficient. 

 

(1) Case of (0)y a  and '(0) 0y  :  Eq. (17) yields 

 

 

(5) (7) (2 1)

2 (4) 3 (6) 4 (8) 5
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       
                           (19) 

 
and Eq. (16) yields the first solution as 
 

2 2 3 4 4 6 5 8( ) ( / 2!) (2 / 4!) (10 / 6!) (80 / 8!) ...y t a a t a t a t a t                               (20) 

 
which is the same as Eq. (12) in the last section. 
 

(2) Case of (0) 0y   and '(0)y b :  Eq. (17) yields 

 

 

(5) (6) (8) (9)

(4) 2 (7) 3 (10) 4

"(0) 0; "'(0) 0; (0) 0; (0) 0; (0) 0; (0) 0;...
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 

      
                  (21) 

 
and Eq. (16) yields the second solution as 
 

2 4 3 7 4 10( ) (2 / 4!) (20 / 7!) (600 /10!) ...y t bt b t b t b t                                     (22) 

 
which is the same as Eq. (15) in the last section. 
 
4. Comparison Between the Frobenius Method and the Leibnitz-Maclaurin Method 
 
Comparing the Frobenius method and the Leibnitz-Maclaurin method for series solutions to the same 
differential equation, we can see that the mathematical procedure of the first method is easier because in 

finding ( )y t  the differentiations are done on the power terms 
nt  of the independent variable t  only,  but 

in the second method  the differentiations needed for finding 
( ) ( ), ( 2)ny t n   are done on product terms 

involving the dependent variable ( )y t  and its derivatives 
( 2)( ), ( ),..., ( )ny t y t y t  . However, in the first 

method the coefficients na  of the power series are not readily known, i.e., not until like power terms have 

been compared, whereas in the second method na  is readily obtained from 
( ) (0) / !ny n . 



DOI:10.4186/ej.2016.20.5.203 

ENGINEERING JOURNAL Volume 20 Issue 5, ISSN 0125-8281 (http://www.engj.org/) 209 

 
5. Solution to the Rayleigh Problem by the Leibnitz-Maclaurin Method 
 
In this section we will solve Eq. (1) subject to the initial conditions in Eq. (2) by using the Taylor’s series as 
in the section before the last. For convenience, we transform Eq. (1) by changing the independent and 
dependent variables as follows: 

For the independent variable, we set 
(.) (.)d d

s t
dt ds

     so that Eq. (1) becomes 

 
2

2 2 4
2

2
"( ) [ ( )] ( ) ( ) 0 "( ) ( )

2 4
y s y s y s y s y s

  

  

 
       

 
 

 

which, when we set the new dependent variable 

2

( ) ( )
2

u s y s



  , yields 

 

 
2"( ) [ ( )]u s u s c                                                                  (23) 

 

where 
4 2/(4 )c    and the corresponding initial conditions are  

 

 
2(0) /(2 ); '(0) 0u A c A u                                                 (24) 

 

The results above show that Eq. (4) is a special case of Eq. (23) with 0c  . 
By successively taking derivative of Eq. (23) with respect to s , we obtain  

 

 

 
22 2
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u uu u u u

u uu u u u u u
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u u u

          

  

    

    

  2

(7) (5) (4)

(8) (6) (5) (4) 2

(9) (7) (6) (5)

4 '(0) "'(0) 3[ "(0)] }

... (0) 2{ (0) (0) 5 '(0) (0) 10 "(0) "'(0)}

... (0) 2{ (0) (0) 6 '(0) (0) 15 "(0) (0) 10[ "'(0)] }

... (0) 2{ (0) (0) 7 '(0) (0) 21 "(0) (

u u u

u u u u u u u

u u u u u u u u

u u u u u u u

 

   

    

    (4)

(10) (8) (7) (6)

(5) (4) 2

0) 35 "'(0) (0)}

... (0) 2{ (0) (0) 8 '(0) (0) 28 "(0) (0)

56 "'(0) (0) 35[ (0)] }

u u

u u u u u u u

u u u

 
 
 
 
 
 
 
 
 
 
 
 
 
 

    
 

  

        (25) 

 

which has the same form as Eq. (17) in the section before the last but has a different expression for "(0)u  

from that for "(0)y  in Eq. (17). In general we obtain  
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(2 1) (2 1) (2 2)
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( 1) ( 1) ( ) 2

2 1
(0) 2{ (0) (0) '(0) (0) ...
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2 1
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



 
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 


 
 
 
 
 
 

                         (26) 

 
similar to those in Eq. (18). 

When we set '(0) 0u   in Eq. (25), we get  

 

 

(5) (7) (2 1)
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 
 
 
   
 
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                                (27) 

 

which, when substituted into the Taylor’s series for ( )u s , namely,  
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results in 
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    
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                       (28) 

 

If  we set s t and ( ) ( )y s u s c  , we obtain the solution to the Rayleigh problem as 
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                            (29) 
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which is the same as that obtained by Shidfar and Sadeghi [4] using the Frobenius method.  

In Eq. (29) if we set 0c  , 1  , and 0A a , we will get the same expression for ( )y t as the 

solution to 
2" 0y y  , 0(0) , '(0) 0y a y   obtained in Eq. (12) and (20). 

 
6. Convergence of the Solution 
 

The solution to 
2"( ) [ ( )]u s u s c  given in Eq. (28) is convergent for all values of s  since this equation 

does not have a singular point, and every point s  in the -s u plane is an ordinary point of the equation. 
This is in accordance with the explanation given by Shidfar and Sadeghi [4]. By using the same reasoning, 

we can conclude that the solutions to 
2"( ) [ ( )] 0y t y t   given in Eq. (12), (15), (20), and (22) are 

convergent for all values of t . 
 
7. Other Forms of Solution 
 

The equations 
2"( ) [ ( )] 0y t y t   and 

2"( ) [ ( )]u s u s c   are special cases of the equation of the form 

"( ) ( )y t f y , which is called second-order autonomous equation (see, for example,  Polyanin and Zaitsev 

[11]) and has a solution in the integral form as follows:  
 

2

1 2 ( )

dy
t C

C f y dy
 





                                                    (30) 

 

where 1 2,C C  are arbitrary constants. 

Apostol [7] showed that a solution to the Rayleigh problem in Eqs. (1) and (2),  which can be 

transformed into 
2"( ) [ ( )]u s u s c  , can be expressed as the elliptic integral of the first kind ( , )F k

(see, for example, Spiegel and Liu [12]): 
 

2 20
( , ) ...(0 1)

1 sin

d
F k k

k

 



  


                                             (31) 

 

whereas Harko et al. [10] showed that a solution to "( ) [ ( )] 0...( 1)ny t y t n   , which has  

2"( ) [ ( )] 0y t y t   as a special case, can be expressed as the hypergeometric function 2 1( , ; ; )F a b c d  (see, 

for example, Spiegel and Liu [12]). 

However, all of the solutions mentioned in this section are in the form of ( )t F y , which is the 

reverse of the relationship ( )y G t  in the series solutions given in the earlier sections of this paper.  

 
8. Sample Applications 
 
In this section, the authors will show two practical applications of the anharmonic motion equation 

2"( ) [ ( )]y t y t c  , one in physics and the other in electrical engineering.  

Figure 1 shows a spring-mass system for which k  is the spring constant, m  the mass, y  the 

displacement of the mass from the equilibrium position, and F the applied force. Assuming here that the 

spring is nonlinear, with its restoring force being 
2ky , we can write the equation of motion as 

 
2

2 2 2

2
( ) [ ( )]

d y
m ky F y t y t F

dt
                                               (32) 
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where 
2 /k m   and 1/m  . Next, if we change the independent variable from t  to t   and let F  

be a constant, Eq. (32) will be transformed into  
 

2( ) [ ( )]y y c                                                                  (33) 

 

where 
2/c F  . Equation (33) is in the form of the anharmonic equation of this paper. 

 

k

F
y

L C

Li Ci

( )v t( )I t

 
                  Fig. 1.  A spring-mass system                            Fig. 2.  A parallel LC circuit 
 

Figure 2 shows a parallel electric circuit consisting of a current source ( )I t , an inductor L , and a 

capacitor C . If we let ( )Li t  and ( )Ci t  be the inductor current and the capacitor current, respectively, with 

( )v t  being the voltage across the parallel connection, then the Kirchhoff Current Law will yield  

 

0

( ) 1
( ) ( ) ( ) ( ) ( ) (0) ( )

t

C L L

dv t
i t i t I t C v t dt i I t

dt L
                                   (34) 

 
By differentiating Eq. (34) once with respect to t  and rearrange the resulting equation, we obtain 

 

1 ( ) ( )
( ) ( )

v t I t
v t

C L C


                                                              (35) 

 

If the inductance L  varies inversely with ( )v t , i.e., / ( )L k v t , and ( )I t  is constant, i.e., ( )I t Kt , 

then Eq. (35) becomes 
 

2 2( ) [ ( )]v t v t K                                                           (36) 

 

where 
2 1/ ( )kC   and 1/C  . Equation (36) has the same form as Eq. (32) and can also be 

transformed into the anharmonic equation, Eq. (33), of our interest. 
 
9. Discussion 
 

The equation 
2"( ) [ ( )] 0y t y t   is similar to "( ) ( ) 0y t y t   but the two are different in that the 

former is nonlinear whereas the latter is linear.  From the physical viewpoint, the former equation 
represents a spring-mass system in which the spring gives a restoring force proportional to the square of 

the displacement (
2y ) so that the motion of the mass is anharmonic. However, the latter equation 

represents a spring-mass system in which the spring gives a restoring force proportional to the 
displacement ( y ) so that the motion of the mass is harmonic. From the mathematical viewpoint, the two 
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particular solutions of the former equation cannot form a linear combination to be used as a new solution, 
but those for the latter equation can do so.  

Although the series solution to the equation ( )y t  ( ) ( )f y g t  has been studied by some 

researchers (see [6], for example), the equation 
2"( ) [ ( )] 0y t y t   with the initial conditions (0) 0y   

and 0'(0) 0y a   has not been explicitly solved before.  The solution given in Eq. (15) and (22) in this 

paper is an oddly-looking power series compared with other series that represent such ordinary 

mathematical functions as exp( )t , sin( )t , cos( )t .  Its special feature is that the power of the variable t  

increases by 3 from term to term (the solution is of the form 
1 3

3

0

( ) n

n

n

y t a t






 ). So the first author of this 

paper, who had a long career as an official of Chulalongkorn University, Thailand, proposed that it be 
called the Chula series in honor of the University.  
 
10. Conclusion 
 

This paper shows how to obtain the series solutions to the equation 
2"( ) [ ( )]y t y t c  , focusing on the 

special case of 0, (0) 0, '(0)c y y   constant and on the Taylor’s series method. This bridges the 

knowledge gap left by the works of other authors. The power series solution in the form 
1 3

3

0

( ) n

n

n

y t a t






  

appears infrequently in any mathematical textbook in comparison with such well-known functions as 

exp( )t , sin( )t , and cos( )t . 
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