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Abstract.Many image segmentation algorithms are available but most of them are not fit 
for interpretation of satellite images. Mean-shift algorithm has been used in many recent 
researches as a promising image segmentation technique, which has the speed at O(kn2) 
where n is the number of data points and k is the number of average iteration steps for 
each data point. This method computes using a brute-force in the iteration of a pixel to 
compare with the region it is in. This paper proposes a novel algorithm named First-order 
Neighborhood Mean-shift (FNM) segmentation, which is enhanced from Mean-shift 
segmentation. This algorithm provides information about the relationship of a pixel with 
its neighbors; and makes them fall into the same region which improve the speed to O(kn). 
In this experiment, FNM was compared to well-known algorithms, i.e., K-mean (KM), 
Constrained K-mean (CKM), Adaptive K-mean (AKM), Fuzzy C-mean (FCM) and Mean-
shift (MS) using the reference map from the Landsat. FNM provided better results in 
terms of overall error and correctness criteria. 
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1. Introduction 
 
Remote sensing is the acquisition of information about the earth surface without touching objects in the 
earth so-called satellite image. Satellite image and aerial image have different recording and objective.  
An aerial image can directly demonstrate everything in the area from the top such as trees, grasses, roads, 
and river flows. In contrast, a satellite image is recorded in a long-distance from the land. Regions within 
the satellite image originate from radiation of the sun. The reflection of energy in one region is used to 
check the spectral value in order to distinguish one region over other regions. This process is called Passive 
Remote Sensing [1] as shown in Fig. 1. Most passive sensors use a scanner for imaging, such as Landsat, 
NOAAH, and MODIS etc. The sensor is equipped with spectrometers for measuring signals at several 
spectral bands simultaneously, so-called multispectral images which allow numerous interpretations [2]. 
Recording data for multispectral image depends on weather. The sensor inefficiently records data during 
raining or high density of cloud. This problem always occurs in tropical countries. Acquisition of 
multispectral image has low resolution which causes vague interpretation of image. These problems should 
be solved before interpretation [3].  
 

 
 
Fig. 1. Spectral reflectance of satellite. 

 
Interpretation of a satellite image is divided into human approach and computer approach [4]. Human 

approach needs expert’s profession. The interpreter should have a unique knowledge about the physical 
zone [5]; and interprets repeatedly which can originate the human-error. Furthermore, the more number of 
experts increase, the more interpretations are various. In computer approach, interpretation has necessary 
and sufficient techniques to extract information from the image. The accuracy of computer interpretation is 
directly affected by the quality of image segmentation [6]. Image segmentation is a great technique in 
computer vision for partitioning an image into several semantically homogeneous regions [7]. The similar 
properties of pixels are segmented into the same region. However, dissimilar pixels are grouped in different 
regions [8-12]. Segmentation algorithms can be applied in many other applications [13] such as image 
analysis, medical image analysis, pattern reorganization, etc. For satellite images, segmentation can visualize 
compositions of earth surface which implement for country development in cartography, disaster, 
oceanography, hydrology, geology, forest, and agriculture etc. [14-15]. 

Several researches reported application of satellite image segmentation techniques such as K-mean 
(KM) [7, 16], Constrained K-mean (CKM) [16-17], Adaptive K-mean (AKM) [16], Fuzzy C-mean (FCM) 
[13, 16, 18-19]. Most of their weakness is either pre-definition for initial number of clusters or outlier. 

- Pre-definition of Initial number of clusters: the initial number of clusters is manually predefined by 
human before segmentation. 

- Outlier: in case a group of pixels has less density, segmentation might cluster them as outlier. Or if 
an area of interest (AoI) is segmented as the outlier, the result of segmentation affects a large 
number of errors. Outlier filtering is the solution for this process.    

 

1. Sunlight

2. Reflectance of  the light
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Mean-shift algorithm is a density-based which is simple and flexible for image segmentation. Ordering 
pixels are ascending then all pixels are grouped into windows. Hence, the pre-definition of clusters is 
unnecessary. As multispectral satellite image has a number of outliers such as cloudy, rainy and fog. This 
problem causes many unknown-values of pixels. There are many researches about mean-shift segmentation 
which not only insufficiently handled the outlier in satellite image but also had high latency time for self-
defining the number of clusters [20-24].  

In this paper, we propose a novel algorithm named First-order Neighborhood Mean-shift (FNM) 
segmentation, which is enhanced from Mean-shift segmentation. This algorithm provides information 
about the relationship of a pixel with its neighbors; and makes them fall into the same region which 
improve the speed to O(kn). 

The contributions of this paper are as follows:  
- To eliminate the outlier, we generated the estimation procedure for unknown pixel values using 

neighbors of pixel. 
- To reduce latency time for self-defining the number of clusters, we parallelized similar values of 

neighbor pixels. 
- To improve segmentation with self-defining the number of clusters that can be able to compare in 

term of correctness with the algorithms with pre-definition. 
The rest of this paper is organized as follows: Section 2 provides a preliminary, followed by our 

proposed algorithm in Section 3. Section 4 has experimental results and discussion. The conclusion and 
future work are in Section 5. 
 

2. Preliminary 
 

2.1. Mean-shift Algorithm 
 
A mean-shift algorithm was originally introduced for valley-seeking procedures [22]. Later, this method was 
used to analyze an image; and essential to segment the composition of image. Moreover this method can 
use to track moving objects, analysis and clustering. 

Mean-shift algorithm can be depicted as Fig. 2. Each color group is a region of the image. The density 
of each group depends on the mean calculated from density of all pixels in the same group.  Each group 
has a mean value; and each pixel has a pixel value. Each pixel chooses one group that has a mean value 
similar to its pixel value. 
 

 
 
Fig. 2. Mean-shift algorithm [23]. 
 
2.2. First order Neighborhood System 
 

Neighborhood system )(sN , where sites s∈S refer to each component of the random variable [25-27]. 

In this work, a first order neighborhood system )1)((1 sN , where the eight neighborhoods are defined 

by (1), and visualized by Fig. 3. 
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Fig. 3. First -order neighborhood system [26]. 
 

3. Proposed FNM Algorithm 
 
This section describes concept of First-order Neighborhood Mean-shift (FNM) algorithm. FNM algorithm 
is integrated the advantage of first-order neighborhood and mean-shift algorithm. First-order neighborhood 
can increase the speed of FNM becomes higher than mean-shift algorithm. The system has three main 
schemes as shown in Fig. 4: Preprocessing, First-order neighborhood and Computational Shifting. 
 

 
 
Fig. 4. Diagram of the FNM segmentation. 
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3.1. Preprocessing 
 
The Landsat image is input. For low-level feature analysis of satellite images [28], each pixel of the raw 
image is converted from RGB to the gray scale values (0-255). Introductorily, gray scale value is a format of 
image in term of 256-valued brightness. In this paper, we used YIQ color space [29], as in (2), at the Y-axis 
to convert RGB to grayscale format as in Eq. (3). 
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312.0523.0211.0

322.0274.0596.0

114.0587.0299.0

         (2) 

 
where R, G, B and Y are in the range between 0 and 1, I is between -0.5957 and 0.5957 and Q is  between -
0.5226 and 0.5226. 
 

ijijijij BGRY 1140.05870.02989.0     (3) 

 
where Yij is the gray-scale value of a pixel at the position i and j within the image, Rij is the red-parameter of 
a pixel at the position i and j within the image, Gij is the green-parameter of a pixel at the position i and j 
within the image and Bij is the blue-parameter of a pixel at the position i and j within the image. 

The more the pixel convergence to 0, the more the pixel becomes black. The more the pixel 
convergence to 255, the more the pixel becomes white, as in Fig. 5. 
 

 
   (a)    (b) 
 
Fig. 5. (a) Example of input image and (b) Gray scale range. 
 
3.2. Fist-order Neighborhood 
 
This sub-system has two parameters: group size and number of groups which are inversely dependent as in 
(4). From Fig. 6, the window has range between 0-255. If the group size is large, the window has a less 
number of groups. In case of small group size, the window has a huge number of groups.  In each iteration, 
a pixel and its 8 neighbors (according to first-order neighborhood system), are input to the groups of 
window, where the range of the group is most similar to the pixel value. The highest frequency of group is 
chosen to store for processing in the next scheme. 
 

                                    
(4) 
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Fig. 6. Window, group size and number of groups. 
 
3.3. Computational Shifting 
 
As Fig. 4, all pixels of the image are input for computation. In the Mean-shift segmentation, a pixel chooses 
one group of window to move, where the range of the group is most similar to its pixel value. It computes 
Eq. (4) and (5), as pixel by pixel overall the image. This method takes long time to segment the region like 
brute-force at O(kn2). To segment a large-size image, or an image which has a pixel that is similar to many 
pixels in the same image. First-order Neighborhood system chooses the representative value from the 
group instead of overall pixel value. It can solve the speed problem of mean-shift algorithm from O(kn2) to 
O(kn). The FNM algorithm consists of four main steps as Fig. 7. 
 

 
 
Fig. 7. Visualization of computational shifting. 
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Step 1. Compute the density of grayscale value of the group from every pixel which is chosen from the 
highest frequency of group, using (5). As shown in Fig.8, pixels are substituted by points. 
 

 
 
Fig. 8. Window and groups. 
 

 
(5) 

 
where p(x) is a pixel at position x, n is number of pixels from the image, m is number of groups,   is a 
window size, K(t) is a kernel density function of the position which has the highest density in the considered 
area  p(x)=0. 

Step 2. Calculate the mean of each group to shift the range of the group from (6) and (7), as shown in 
Fig. 9. 
 

 
 
Fig. 9. Shifting of the groups. 
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where p(x) is a pixel at position x, n is number of pixels from the image, m is number of groups,   is a 
window size, K(t) is a kernel density function of the position which has the highest density in the considered 
area p(x)=0. 

Step 3.The algorithm stops shifting when the same mean of different groups are partially overlapped, 
as shown in Fig. 10(a). And the final groups are iteratively reversed to the previous shifting as shown in  
Fig. 10(b). 
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Fig. 10. Merging of groups and extension of groups (a) Partial overlapping of groups, (b) Reversing of final 
groups to the previous shifting. 
 

Step 4. From the neighborhood system, the pixel chooses one group, and also brings its neighbors 
which have similar pixel values to move to the same group –so called FNM Segmentation as in Fig. 11. 
 

 
 
Fig. 11. Final result of FNM segmentation. 
 

4. Experimental Results and Comparison 
 
4.1. Experimental Setup 
 
Images used in this experiment were from Landsat dataset with 100x100 pixels and wavelength at 0.45-0.69 
µm (visible wavelength). This wavelength could be seen by eyes as blue, green and red. Image segmentation 
in this wavelength can be obviously segmented cloud, water, and land as shown in Table 1. Each pixel 
represents 30mx30m physical area. 

The image was input to the system. The image was transformed from RGB to Grayscale. The system 
segmented the image by FNM segmentation. The value of pixel will consider which group the pixel was a 
member as shown in Fig. 10. In this system, we used 500 images to verify our FNM segmentation in the 
environment of CPU core i5 and 4GB RAM. The system was implemented by M-script language in Matlab. 
 
Table 1. Detail of output. 
 

Group 1 (forest) Group 2 (water) Group 3 (cloud) 
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Fig. 12. Grayscale value and groups of output. 
 
4.2. Run-time and Computational Complexity Analysis 
 
4.2.1. Run-time Comparison between FNM and MS 
 
The results and time comparison between Mean-shift and FNM are shown in Table 2 that each image 
consists of water (grey), forest (black) and cloud (white). The results show that our FNM is more suitable 
for high variant pixels than Mean-shift because FNM also considers the neighbors for segmentation. In 
case a pixel value did not recognized any groups, its value could be estimated the membership of one group 
from its neighbors. In term of time comparison, FNM has less processing time than mean-shift. In FNM, 
only the redundant value of pixel is selected as a representative into the group. However, Mean-shift has 
higher computational complexity because the iterations for computation have a large number for all pixels. 
 
Table 2. Result and processing time between mean-shift and FNM segmentation. 
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4.2.2. Computational complexities of FNM and other algorithms 
 
In this section, the computational complexity of FMM was compared with the other well-known 
segmentation algorithms, i.e., K-mean (KM) [7, 16], Constrained K-mean (CKM) [16-17], Adaptive K-
mean (AKM) [16], Fuzzy C-mean (FCM) [16, 18-19] and Mean-shift (MS) [24]. These algorithms are 
divided into two groups: Pre-definition of cluster number (KM, CKM, AKM and FCM) and Self-definition 
of cluster number (MS and FNM). Introductorily, a high computational complexity needs more run-time 
for algorithm execution [30]. A mathematical asymptotic-notation named Big-O was used for complexity 
analysis as shown in Table 3. The Big-o parameters are k1, k2, n, p and c. 

- k1 is a number of average iteration steps in pre-definition cluster number 
- k2 is a number of average iteration steps in self-definition cluster number 
- n is a number of data points 
- p is a number of data dimensions 
- c is a number of clusters 

 
Table 3. Big-O notation comparison between FNM and other algorithms. 
 

Algorithm 
Definition of Cluster 

Number 
Big-O notation Complexity Level[30] 

KM [7,16] Pre-definition )( 1nkO  Multi-linear 

CKM [16-17] Pre-definition )( 2

1nkO  Multi-quadratics 

AKM [16] Pre-definition )()( 22

1 pOpnkO   Quadratics 

FCM [16, 18-19] Pre-definition )( 2

1nckO  Multi-quadratics 

MS [24] Self-definition )( 2

2nkO  Multi-quadratics 

FNM Self-definition )()8( 22 nkOnkO   Multi-linear 

 
From Table 3, KM and FNM are in the complexity level of multi-linear. AKM is a quadratics. CKM, 

FCM and MS are multi-quadratics. From the Big-o notation, multi-linear has the least computational 
complexity because the multiplied-growth function equals as k1n and k2n. Meanwhile, quadratics (as p2) and 
multi-quadratics (as k1n2, k1nc2 and k2n2) need more multiplied-computation than multi-linear. Thus, KM 
and FNM have the least time complexity. For the comparison between KM and FNM, we consider k1 and 
k2. However, FNM is an algorithm with automatic self-definition cluster number that is unnecessary to 
manually predefine the number of clusters like KM.  
 
4.3. Quality Comparisons between FNM and Other Algorithms 
 
The evaluation of clustering/segmentation structures is the most difficult cluster analysis [31]. In this paper, 
evaluation of FNM used the reference map as a target class to compare with other well-known 
segmentation algorithms, i.e., K-mean (KM) [7,16], Constrained K-mean (CKM) [16-17], Adaptive K-mean 
(AKM) [16], Fuzzy C-mean (FCM) [16, 18-19] and Mean-shift (MS)[24]. The reference map was from 
Landsat (visible wavelength) in the zone of Dead Sea, Israel which was downloaded from 
https://earth.esa.int/web/earth-watching/change-detection/content/-/article/the-dead-sea [16]. The 
evaluation criteria consisted of Overall Error (OE), Commission Error (CE), Percentage Correct 
Classification (PCC), Precision (Precision), Recall (Recall), F1 Measure (F1), G Measure (G), and Mathew’s 
correlation Coefficient (MCC) as shown in Fig. 13. Definitions and formulas are shown in Table 4. These 
metrics have been calculated from TP, TN, FN and FP. 

- TP is the number of changed pixels identified correctly. 
- TN is the number of pixels correctly identified as unchanged. 
- FN is the number of changed pixels wrongly identified as unchanged pixels. 
- FP is the number of unchanged pixels identified as changed pixels. 
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Fig. 13. Evaluation diagram for algorithms. 
 
Table 4. Evaluation criteria [16]. 
 

Evaluation 
Criteria 

Formula Definition 

Overall Error (OE) 
TPFN

FN
OE


  

OE deals with the probability that a changed 
pixel is wrongly identified as an unchanged 
pixel. 

Commission Error 
(CE) FPTN

FP
CE


  

CE deals with the probability that unchanged 
pixel is wrongly identified as a changed pixel. 

Percentage Correct 
Classification 
(PCC) )(

)(

FNFPTNTP

TNTP
PCC




  

PCC identifies the overall accuracy of the 
proposed method by means of detecting the 
changed pixels as changed and unchanged 
pixels as unchanged. 

Precision 
FPTP

TP
ecision


Pr  

Precision is referred to the fraction of 
changed pixels identified correctly. 

Recall 
FNTP

TP
call


Re  

Recall is referred to the fraction of changed 
pixels identified as unchanged. 

F1 Measure 
callesicion

callesicion
F

RePr

RePr
21




  F1 is a harmonic mean of precision and recall. 

G Measure callecisionG RePr   G is a geometric mean of precision and recall. 

Mathew’s 
correlation 
Coefficient (MCC) 

))()()(( FPTNFNTPFNTNFPTP

FNFPTNTP
MCC






 
MCC is an accuracy of precision and recall. 

 
Table 5. Quantitative comparison between FNM and other algorithms. 
 

Algorithm OE (%) CE (%) PCC (%) Precision Recall F1 G MCC 

KM[7,16] 40.7 23.7 76.0 0.0281 0.5928 0.053 0.1291 3.5168 

CKM[16-17] 14.8 7.51 92.4 0.1161 0.8517 0.204 0.3144 6.1262 

AKM[16] 17.8 10.0 89.8 0.0869 0.8213 0.157 0.2672 5.7765 

FCM[16, 18-19] 19.3 10.3 89.5 0.0843 0.7991 0.152 0.2596 5.5900 

MS[24] 44.5 25.5 72.7 0.0268 0.5874 0.049 0.1096 3.3795 

FNM 15.1 7.86 91.7 0.1089 0.8500 0.192 0.305 6.073 

 

Reference Map

KM, CKM, 
AKM ,FCM, 
MS, FNM

OE CE PCC Precision Recall
F1 

Measure
G 

Measure
MCC

Performance 
Evaluation
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(a) Original image (b) KM 

  
(c) CKM (d) AKM 

  
(e) FCM (f) MS 

 
(g) FNM 

 
Fig. 14. Results comparison (a) Original image, (b) KM [7,16], (c) CKM [16-17], (d) AKM [16], (e) FCM  
[16, 18-19], (f) MS[24] and (g) FNM. 
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From Table 5, overall error criteria (OE andCE) of CKM (QE=14.8 and CE=7.51) and FNM 
(QE=15.1 and CE=7.86) have similar efficiency. However, CKM needs to predefine the number of 
clusters as well as KM, AKM and FCM. In contrast, FNM and MS self-segment the cluster numbers. KM 
and MS’ outliers are from over-segmentation that is over-abundant computation as shown in Fig. 14 (b) 
and (f). Overall correctness (PCC, Precision, Recall, F1, G and MCC) of FNM (PCC=91.7, 
Precision=0.1089, Recall=0.8500, F1=0.192, G=0.305 and MCC=6.073) provides hugely better result than 
MS that can be comparable with other existing algorithms, especially CKM (PCC=92.4, Precision=0.1161, 
Recall=0.8517, F1=0.204, G=0.3144 and MCC=6.1262). FNM and CKM are robust for over-segmentation 
among variant pixel values as shown in Fig. 14 (c) and (g). 
 

5. Conclusion 
 
This paper proposed a novel algorithm named FNM segmentation with O(kn). It improved from Mean-
shift (MS) segmentation with O(kn2). The advantage of MS: non-predefined cluster numbers was applied in 
our segmentation. However, MS has drawbacks: outlier and latency time. FNM could improve speed using 
First-order Neighborhood system. Moreover, this concept could reduce over-segmentation of mean-shift 
algorithm. Experimental images were from Landsat dataset with 100x100 pixels and wavelength at 0.45-
0.69 µm. 

Furthermore, FNM were compared to well-known algorithms, i.e., K-mean (KM), Constrained  
K-mean (CKM), Adaptive K-mean (AKM), Fuzzy C-mean (FCM) and Mean-shift (MS). The evaluation 
criteria consisted of Overall Error (OE), Commission Error (CE), Percentage Correct Classification (PCC), 
Precision, Recall, F1 Measure, G Measure, and Mathew’s correlation Coefficient (MCC). The results show 
that our FNM has overall error and correctness comparable to CKM. Although CKM can reduce  
over-segmentation, the number of clusters must be predefined. In contrast, neighbors of pixel are 
considered in our FNM for reduction of over-segmentation without pre-defined cluster numbers. 

For future work, FNM segmentation may use further for other image types, such as medical image or 
surveillance image. Moreover, FNM segmentation uses the first-order neighbors of a pixel; but the second-
ordinary neighbors of a pixel can be used in image segmentation. 
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